摘要:高中数学零基础应该怎么学 6. 多寻求帮助:在学习数学的过程中,遇到困难和问题时不要怕,试题题型及分配比例:
高中数学零基础应该怎么学
6. 多寻求帮助:在学习数学的过程中,遇到困难和问题时不要怕,试题题型及分配比例:(1)选择题40分、(2)填空题30分、(3)解答题80分要及时寻求老师、同学或其他专业人士的帮助。通过与他人的讨论交流,可以更好地理解和记忆知识点。高中数学基础辅导该怎么学习比较好?
高考数学基础理论_高考数学基础题资料
高考数学基础理论_高考数学基础题资料
高考数学基础理论_高考数学基础题资料
一、直选法——简单直观
高中数学基础辅导该怎么学习比较好?在中学和小学,在这个阶段,数学的难度不是很大,家长可以在家辅导孩子。但是到了高中,数学的难度就比较大了,有所提高。不仅仅是一个年级,对于很多学生来说,被父母搞糊涂总是不可能的。这时候就需要一个高中数学家教了。
一、高中数学基础辅导,做好基础
孩子的学习就跟我们的工作一样,都需要科学的方法和专业的指导!
我们在这里做的学习规划:
第二,加强孩子的理解
第三,老.师帮助孩子了解更多
第四,加强孩子的理解
第五,老.师帮助孩子了解更多
高中数学基础辅导的时候,老.师说的话可能是一句话就说完了,但是孩子当时没有听清楚或者没有完全理解。那就很麻烦了,所以有必要输入老.师在课堂上讲给孩子听不懂的东西。老.师要把重点放在多学习上,这样才能用在考试上。
高考数学基础题占多少分 数学分值分布
学好高中数学需要付出持久的努力,以下是一些具体建议,希望能帮助你更好地学好高中数学:有很多的同学是非常想知道,高考数学基础题占多少分,高考数学分值分布,我整理了相关信息,希望会对大家有所帮助!
一定要写清楚计算过程,字迹一定要公正,合理安排时间,遇到不会的题,立马跳过,不要浪费时间;注意在拿到试卷的时候,不要着急答题,注意调整自己的心态,注意正确应用数学公式。高考数学基础题占试卷的比例
网友:我是文科考生,数学基础不错,平时可以拿110分,现在还有半个月时间复习,是否可以考120分以上?其实文科、理科是有一些异的。不过一般来说,都是7:2:1,基础题百分之七十,中档题百分之二十,难题百分之十,但是高考每年都是不一样的,比如说它会一年简单,一年难,所以最终会在百分之十左右。所以,尽量不要去管什么难题,将基础题和中档题复习好,一定会有个不错的成绩。
数学试卷分布情况
试卷内容及分配比例:(1)、简易逻辑10分、(2)数列19分、(3)三角函数19分、(4)立体几何18分、(5)圆锥曲线18分、(6)概率与统计18分、(7)导数18分、(8)算法5分、(9)线性规划5分、(10)不等式5分、(11)向量5分、(12)复数5分、(13)三视图5分
试题难度及分配比例:(1)较易试题、(2)中等试题、(3)较难试题
高考抓基础题的方法
做题训练
大家都知道利用做题来提高做题速度,但是却没有好好的规划。到了这个阶段,做难题意义已经不大。应该配合这阶段的冲刺,同时训练做题速度。
这里我建议同学们无论是出于冲刺角度还是做题速度训练角度,都用简单题和中等题来训练。并且顺序是从选择题开始,然后是简单、中等的解答题,而后是填空题,有时间了才去练习所谓的“一题”。
通过做题来养成正确的考试习惯
刚开始训练时,做题时要讲究 一 看二想三动四回顾。先看清题意,再思考题干和题肢之间的关联,然后才动手,总结。当你习惯了这些步骤后,就能快速答题了。切忌没有形成相对固定的解题思维之前,一拿到题就闷头做。当你掌握一定的思维和技巧,总结出相对固定的解题思维时,才能一拿到题,就开始动手。
高考数学试题中各章节知识的比重
五、解析几何一、 数学命题原则
十、高考数学各类题型的解题技巧2.数学学科的特点是高考数学命题的基础,在命题过程中命题人会充分考虑这些特点,发挥其内部的选拔机制,实现高考的选拔功能
(1)概念性强.数学是由概念、命题组成的逻辑系统,而概念是基础,是使整个体系联结成一体的结点.数学中每一个术语、符号和习惯用语都有着明确具体的内涵.这个特点反映到考试中就要求考生在解题时首先要透彻理解概念的含义,弄清不同概念之间的区别和联系,切忌将数学语言和日常用语混为一谈,更不应出现“望文生义”之类的错误.
例1、已知{a,b,c} {-1,0,1,2,4,8},以a,b,c为系数,组成二次函数y=ax2+bx+c,开口向上且不过原点的不同的抛物线有__________条。
在解此题中,学生容易犯两种概念性的错误,一个是将{a,b,c} {-1,0,1,2,4,8}与a,b,c∈{-1,0,1,2,4,8},混淆前者是,其元素具有互异性,而后者可以相同,二是二次函数y=x2+4x+2与y=2x2+8x+4是两个不同的函数,而方程x2+4x+2=0 与2x2+8x+4=0却有相同的解。
因此,我们在高三后期复习中,要注意发现学生在概念的理解上还有哪些错误和不严谨的地方;选题中,不要选语义不清,容易引起歧异的题;而在复习教学中,.同时应注意各种符号和图形的运用,减少生活语言对数学语言的干扰,影响学生的正常复习和思维方向。
(2)充满思辨性.这个特点源于数学的抽象性、系统性和逻辑性.数学知识不是经过观察实验总结出来的,而是经演绎推理而形成的逻辑体系,逻辑推理是其基本的研究方法;数学不是知识性的学科,而是思维型的学科.
例2、已知椭圆的离心率为0.5,两准线的距离为8,椭圆焦点为F1,F2,点P在此椭圆上,∠F1PF2=300,则ΔF1PF2的面积为___________。
在解此题中,学生会用椭圆的焦点三角形的面积公式b2 tan 快速地解答出,但本题可以有多种变化,如:椭圆改成双曲线,或改焦点为长轴顶点等(当然数据也要做相应调整),学生就不一定做得来了。
数学试题靠机械记忆,只凭直觉和印象就可以作答的很少.为了正确解答,总要求考生具备一定的观察、分析和推断能力.因此,在高三后期复习中,不要给学生补充太多的中间性的公式和结论,而应教会学生理解此中间性的公式和结论的本质和推导。
(4)解法多样.一般数学试题的结果虽确定,但解法却多种多样,这有利于考生发挥各自的特点,灵活解答,真正显现其水平.命题时应考虑各种等价解法的考查重点和难度大致相同,解答到同样深度给同样的分值,不同解法的考查要求符合命题的初衷,实现考查目的.
例3、(04年)不等式 | x+2| 》| x | 的解集是___________。
在解此题中,学生可以用平方法,零点分段法,函数图象(数形结合)、数轴等多种方法,每一种方法都能体现相应的数学思想。我们在高三后期复习中,选讲的题尽量能象本题一样能体现出解法的多样性。
二、 数学命题的结构、题型、难度
1.全面考查考生素质,在选拔中应强调,只有各方面的素质都比较好的学生才是高校所需的学生.因此,试卷应有合理的知识结构和能力层次结构.知识结构是指试卷中包含学科各部分知识的比例.在编制双向细目表时,应根据各部分内容的教学时数和普通高考对考生知识结构的要求,确定试卷中各部分知识内容的分数比例,全面考查概念、定理、公式和法则等各项基础知识.试卷能力层次结构反映试卷对能力要求的层次和比例.试卷对能力要求的层次和比例,反映着考查的性质和要求.同样的学科知识内容,不同性质的考试对能力要求的层次和比例是不同的.在高考中,应既考查数学能力,又考查一般认识能力,如观察力、注意力、记忆力、想象力和思维能力;既考查较高层次的能力,又考查较低层次的能力.数学高考中,考试目标包括基本方法的内容?因此还应注意结合各项知识考查数学方法.将知识内容、数学方法和能力层次三者有机结合,并融入具体试题,才能有效地全面考查考生素质.
2.体现要求层次,控制试卷难度
高考的目的是为高校选拔新生,但其要求仍要以高中教学内容为基础.数学高考不同于数学竞赛.高考兼有速度要求,试卷难度适中,一般考生都能得到基本分;而竞赛是典型的难度考试,试卷难度很大,只有极少数考生能取得较好成绩.
这是一道常见于各种参考书上的题,许多教师讲过,学生也做过,但它是由97年全国高中数学联赛的一道20分的大题改过来的,在高三后期就没有必要再讲,再做这种技巧强,解法单一的题了,从而为学生节约宝贵的时间和精力。
3 .根据教育测量学原理,大规模考试的整卷难度在0.5左右最为理想,可以使考生成绩呈正态分布,标准比较大,各分数段考生人数分布比较合理,对考生总体的区分能力最强.但考虑到中学的评价方法和评价机制尚不健全,高考事实上对高中教学有着较强的评价导向作用,为稳定高中教学秩序,照顾全省总体的实际教学水平,整卷难度控制在0.55左右比较合适.估计应比03年容易,比05年难一点,大体与04年难度相当.
试卷中各种难度的档次一般这样界定,难度在0.7以上为易题,0.4—0.7为中档题,0.4以下为难题.从过去的全国高考来看,试卷中易、中、难三种试题的比例为3:5:2比较合适,各种题型中易、中、难题目的比例分别为选择题3:2:1,填空题2:1:1,而解答题一般不安排易题,中档题和难题的比例为1:1.其次各个试题的难度,一般在0.2—0.8之间,并在每种题型中编拟一些有一定难度的试题,从而实现选拔的目的.如果一道考题过难,就达不到选拔的目的。
因此,在高三后期复习中,我们的讲练都应以中档题中的较为有代表性的题为主,重点强调基本知识、基本思想和方法,强调熟悉和过手,而不是加难和拔高。
4.高考要以考查能力和素质为主.为真正考查出学生的潜能和素质,必须给学生更多的思考空间和时间,控制运算量,增加考生思考时间是高考改革的方向.因此,教师在选题、编题、教学、制卷中,应尽量避免繁、难的运算,控制计算量,排除由于计算过多过繁造成耗时较多,或由计算错误而造成学生分析障碍,以便学生集中思考问题.
5.由于文、理科所学习的内容上有许多不同的地方,并且文、理科学生的数学思维能力也有很大的距,因此,文理科试卷在难度上是有别的,试卷中交叉共用的部分多数属于中等难度的试题.文科考生能力的距很大,水平异更为明显,高考试题难度的起点较理科有所降低,而试题难度的终点应与理科相同.所以对于文理跨科的教师要注意在教学的各个环节中,一定要针对学生的不同情况,采用有一定异的例题,练习题和考题,即使同一题,采取讲解方法,也会有所异。
第三节 各章节内容在高考中考题特点
数学科有近200个知识点,而现在离高考仅两个月的时间,再分章节复习是不可能,同时高考命题强调知识之间的交叉、渗透和综合,分章节复习也不利于学生综合能力的提高,因此,高三后期复习应强化主干知识,因为主干知识是支撑学科知识体系的主要内容,在高考中,保持较高的比例,并达到必要的深度,构成数学试题的主体.我们应从高中数学的整体上设计教学,教学中应淡化特殊技巧,强调通法通解,强调数学思想和方法,同时又根据各章节内容在高中数学中的作用和特点,及其相互之间的关联,采取一些有所侧重的教学。
一、 函数、三角函数、导数
函数和导数是高中教学内容的知识主干,是高考重中之重.函数内容有三块:一、函数的概念,函数的图像与性质,指数函数和对数函数,反函数和函数的关系、函数的单调性;二、同角、诱导、和、倍角公式,三角函数,函数的奇偶性和周期性;三、函数极限、函数连续性、函数的导数,导数的应用,使用导数的方法研究函数的单调性、极大(小)值和(小)值。
高考对函数内容的考查是考查能力的重要素材,一般考查能力的试题都是以函数为基础编制的,在旧课程卷中多与不等式、数列等内容相综合,在新课程卷中函数问题更多是与导数相结合,发挥导数的工具作用,应用导数研究函数的性质,应用函数的单调性证明不等式,体现出新的综合热点。随着函数与导数内容的结合,一般的问题都是先从求导开始,而求导又有规范的方法,利用导数判断函数的单调性,有规定的尺度,具有较强的可作性,难度适中.
函数和导数的内容在高考试卷中所占的比例较大,每年都有题目考查.考查时有一定的综合性,并与思想方法紧密结合,对函数与方程的思想、数形结合的思想、分类讨论的思想、有限与无限的思想等都进行了深入的考查.这种综合地统揽各种知识、综合地应用各种方法和能力,在函数的考查中得到了充分的体现.
函数和导数的解答题在文、理两卷中往往分别命制,这不仅是由教学内容要求的异所决定的,也与文、理科考生的思维水平异有关.文科卷中函数与导数的解答题,其解析式只能选用多项式函数;而理科卷则可在指数函数、对数函数以及三角函数中选取.在选择题和填空题中更多地涉及函数图像、反函数、函数的奇偶性、函数的极限、函数的连续性和导数的几何意义等重点内容.在高考时往往不是简单地考查公式的应用,而是与数学思想方法相结合,突出考查函数与方程的思想、有限与无限的思想.
在新教材中,三角函数公式要求弱化,并对公式作了较大的删减,同角公式由8个删为3个;删去了余切的诱导公式;删去了半角公式、积化和与和化积公式;删去了反三角函数与简单三角方程的绝大部分内容,只保留了反正弦、反余弦、反正切的意义与符号表示,而简单三角方程的内容只要求由已知三角函数值求角.因此,新课程卷对三角函数的考查内容也随之进行了调整.由于新教材中删去了复数的三角式,删去了参数方程的部分内容,因此三角函数的工具性作用有所减弱,而新增内容如平面向量、极限与导数,它们在新教材中的工具性作用替代了三角函数在原教材中的工具性作用.
在高考中把三角函数作为函数的一种,突出考查它的图像与性质,尤其是形如y=Asin(ωx+φ)的(6)新课标《数学实验》、《数学模拟实验》函数图像与性质,对三角公式和三角变形的考查或与三角函数的图像与性质相结合,或直接化简求值.在化简求值的问题中,不仅考查考生对相关变换公式掌握的熟练程度,更重要的是以三角变形公式为素材,重点考查相关的数学思想和方法,主要是方程的思想和换元法.
由于删去了反三角函数与三角方程的大部分内容,对反三角函数求会用反三角函数符号表示相关的角,会由三角函数值求角就行.
二、数列
数列的内容很少,但在高考中,数列内容却占有重要的地位。主要内容有一般数列的概念与性质,等数列与等比数列,及其通项公式与前n项和公式.高考历来把数列当作重要的内容来考查,对这部分的要求达到相应的深度,题目有适当的难度和一定的综合程度.数列问题在考查演绎推理能力中发挥着越来越重要的作用.高考试卷的数列试题中,有的是从等数列或等比数列人手构造新的数列,有的是从比较抽象的数列人手,给定数列的一些性质,要求考生进行严格的逻辑推证,找到数列的通项公式,或证明数列的其他一些性质.在这里也有一些等数列或等比数列的公式可以应用,但更多的是应用数列的一般的性质,如an=Sn-Sn-1等.这些试题对恒等证明能力提出了很高的要求,要求考生首先明确变形目标,然后根据目标进行恒等变形.在变形过程中,不同的变形方法也可能简化原来的式子,也可能使其更加复杂,所以还存在着变形路径的选择问题.
高考对数列的考查把重点放在对数学思想方法的考查,放在对思维能力以及创新意识和实践能力的考查上.使用选择题、填空题形式考查的数列试题,往往突出考查函数与方程的思想、数形结合的思想、特殊与一般的思想、有限与无限的思想等数学思想方法,除了考查教材中学习的等数列与等比数列外,也考查一般数列.高考数列解答题,其内容往往是一般数列的内容,其方法是研究数列通项及前n项和的一般方法,并且往往不单一考查数列而是与其他内容相综合,过去,常将数列与函数,数列与不等式综合,而现在有数列与导数、解析几何相结合出题的新特点.
例如:下面的题就是一道数列与导数的结合
文、理科高考数列题一般命制不同的试题,理科试题侧重于理性思维,命题设计时以一般数列为主,以抽象思维和逻辑思维为主;而文科试卷则侧重于基础知识和基本方法的考查,命题设计时以等、等比数列为主,以具体思维、演绎思维为主.
三、不等式
不等式是高中数学的重要内容之一,学生在高中阶段要学习不等式的性质、简单不等式的解法、不等式的证明以及不等式的应用.在新教材中,不等式的内容与原教材相比,作了一些调整.在解不等式部分,新大纲和新教材中删去了无理不等式、指数不等式和对数不等式的解法,只保留了二次不等式、分式不等式以及含有的简单不等式的解法;平均值定理由原来的三个正数降低为两个正数的要求.由于这些变化,高考命题也相应作出了调整.
在高考试题中,对不等式内容的考查包括不等式的性质,解简单的不等式以及平均值定理的应用等.对不等式性质的考查突出体现对基础知识的考查,其中也能体现出对相应思想方法的考查.以选择题、填空题形式考查解不等式,不仅仅考查解不等式时经常使用的同解变形的代数方法,更突出体现数形结合的思想以及特殊化的思想.对使用平均值定理求最值的考查,由于教学要求的变化,考查要求有所降低,突出常规方法,淡化特殊技巧。在解答题中,一般是解不等式或证明不等式.不等式的证明与应用常与其他知识内容相综合,尤其是理科试卷,不等式的证明往往与函数、导数、数列的内容综合,属于在知识网络的交汇处设计的试题,有一定的综合性和难度,突出体现对理性思维的考查.解不等式的应用往往以求取值范围的设问方式呈现,通过相关知识,转化为解不等式或不等式组的问题,并且往往含有参数,也有一定的综合性和难度.总之,以解答题的形式对不等式内容的考查,往往不是单一考查,而是与其他知识内容相综合,有较多的方法和较高的能力要求.
四、立体几何
高考试卷中对空间想象能力的考查集中体现在立体几何试题上.在新旧教材中立体几何内容有较大的异,主要是新教材编制了A、B两种版本,在B版教材中增加了空间向量的方法.
新教材中删去了圆柱、圆锥、圆台,只保留了球;而多面体中删去了棱台,保留了棱柱和棱锥,并且删去了体积的大部分内容.由于教材内容的变化,高考对这部分内容的考查也进行了相应的调整,删去的内容不再考查.不过多面体的内容在小学和初中都学习过,也学过相关几何体体积的计算,因此,在高考试题中出现多面体体积的计算应属于正常范围.
在立体几何中引入空间向量以后,很多问.题都可以用向量的方法解决.由于应用空间向量的方法,可以通过建立空间坐标系,将几何元素之间的关系数量化,进而通过计算解决求解、证明的问题,空间向量更显现出解题的优势.
解析几何是高中数学的又一重要内容,新旧教材相比较变化不是很大,只是删去了极坐标,删减了参数方程,增加了简单线性规划的内容.其核心内容直线和圆以及圆锥曲线基本没有变化,因此高考对解析几何的考查要求也变化不大.不过,由于新教材中增加了平面向量的内容,而平面向量可以用坐标表示,因此,以坐标为桥梁,使向量的有关运算与解析几何的坐标运算产生联系,便可以以向量及其有关运算为工具,来研究解决解析几何中的有关问题,主要是直线的平行、垂直、点的共线、定比分点以及平移等,这样就给高考中解析几何试题的命制开拓了新的思路,为实现在知识网络的交汇处设计试题提供了良好的素材.
解析几何问题着重考查解析几何的基本思想,利用代数的方法研究几何问题是解析几何的基本特点和性质。因此,在解题的过程中计算占了很大的比例,对运算能力有较高的要求,但计算要根据题目中曲线的特点和相互之间的关系进行,所以曲线的定义和性质是解题的基础,而在计算过程中,要根据题目的要求,利用曲线性质将计算简化,或将某一个“因式”作为一个整体处理,这样就可大大简化计算,这其中体现的是“模块”的思想,也就是换元法.
解析几何试题除考查概念与定义、基本元素与基本关系外,还突出考查函数与方程的思想、数形结合的思想、特殊与一般的思想等思想
例如:下面的题就是在传统的解析几何中,加入了向量
六、概率与统计
概率统计在研究对象和方法上与以前学习的确定数学有所不同,是一种处理或然的或随机的方法,对过去的必然的因果关系的处理方法是一种完善和补充.
根据中学数学教学大纲的要求,有关概率与统计的内容在新课程中分为必修和选修两部分,其中必修部分包括:随机的概率,等可能的概率,互斥有一个发生的概率,相互的概率,重复试验等.在选修部分分为文科、理科两种要求,选修I为文科的要求,只含统计的内容,包括:抽样方法,总体分布的估计,总体期望值和方的估计.选修Ⅱ为理科的要求,包括:离散型随机变量的分布列,离散型随机变量的期望值和方,抽样方法,总体分布的估计,正态分布,线性回归.在高考试卷中,概率和统计的内容每年都有所涉及,以必修概率内容为主,不过随着对新内容的深入考查,理科的解答题也会设计包括离散型随机变量的分布列与期望为主的概率与统计综合试题.
概率与统计的引入拓广了应用问题取材的范围,概率的计算、离散型随机变量的分布列和数学期望的计算等内容都是考查实践能力的良好素材.
由于中学数学中所学习的概率与统计内容是这一数学分支中最基础的内容,考虑到教学实际和学生的生活实际,高考对这部分内容的考查贴近考生生活,注重考查基础知识和基本方法.
第四节 我在高三后期复习中的一些策略
高三后期学生普遍感到什么知识都知道,各种题型也见过,自己做题也基本都会,但就是模拟考试经常考不好,达不到理想的效果,而时间越来越少,高考越来越近,又没有好的方法,摆脱困境,只有拼命练题,练了又忘,忘了再练,加班加点,疲劳之至。
因此,我们做为教师有必要采取一些科学、合理、切实、高效的方法和策略,和帮助学生,有效地整合旧知识,熟练基本方法,形成更强的综合运用的能力,以一种积极、健康的心态,高昂的士气去迎接高考的到来。
靠!!一楼的那么多废话那么多
选择题:,函数(图像),立体几何,圆锥曲线,概率,基本上不会难,有两道会是偏南的题,一般为立体几何和圆锥曲线或概率的设难
填空:这个不好说
大题:1三角函数(很简单,准确率是重要的)
3立体几何(问基本是证明线平行或垂直,第二问基本是二面角线面角,有难度)
4数列(基本是问求通向公式第二问数列和)
数列比较多,解析几何 立体几何 概率 几种曲线方程 都是重点
高考数学的题型都有哪些?各自占着怎样的占分比?
1当题目所涉及的物理量随条件、5. 多做习题:数学是一门注重练习的学科,多做习题可以强化运用知识的能力,发现知识点掌握不清的问题。可以在教科书、参考书或网上找到相关的习题集,逐步提高自己的水平。高考数学分值分布
三角函数18分左右;立体几何22分左右;解析几何28分左右;数列18分左右;函数与导数43分左右;不等式12分左右;二项式定理6分左右;复数5分;概率与统计18分左右。各知识点都很平均。解析几何的选择题只是考察概念,不会很难,选择提前10道和大题的三角函数,概率,立体几何, 只多要做题,可以在短时间内突破。
我们不妨通过一个智商碾压的例子,来证明一下。围棋世界冠军柯杰,大家应该都熟悉。作为目前围棋的世界人,智商肯定很高,碾压普通人的存在。柯杰除了围棋,还参加了比赛,轻松拿到全国冠军。前一阵,围棋古力,发微博称,刚学会王者荣耀,被柯杰带着,连赢71局,直接上王者。几乎全国都会,平时作为 娱乐 ,并不难,但是要玩到冠军,很难。对柯杰这种高智商的人来说,恐怕你手里有什么牌,这一局从头到尾如何出,你是出牌谨慎还是喜欢冒险,都在他的计算之内。拿到牌的那一刹那,不光牌是透明的,这一局是怎么打完的,都已经是透明的了。打王者荣耀也是如此,并不是说打到王者段位有多厉害,但是带一个新手,从头开始,连赢71局到王者,不是运气与实力就能行的。这是智商碾压,普通人是技术好,但是这些高智商大神,从你前几分钟的行为,就预见到了,你什么时候在哪儿,你会怎么样。2、高考数学哪部分最难
高中数学,别说难或者不难,全部要好好学习。为了高考做准备。说的有点片面,但是真的要全部学习。现在的高考考的比较全面。必须按照考学大纲,全部掌握。高中数学都不太容易,理论性的东西多了一些,需要理解和掌握的东西比初中要多。如果前面的一部分学不好,那后面的就会感到越来越难。个人觉得,排列组合中的计算是最难的。但是对于数学中的难易成都也是因人而异的。
3、高考数学如何取得高分
真懂。知识要掌握准确:在复习中,考生要树立稳扎稳打的习惯,对似懂非懂的基本问题必须实实在在地对待。方法要到位:比如证明问题常用的方法:比较法。2016、2017、2018年高考题都有它的应用,到现在没有变化吗?现在的比较法从高考题上就告诉我们不仅要会直接比较,还要会间接比较即调整后作或作比,而且还要和导数相结合。
高考数学的题型有简易,逻辑数列,三角函数,立体几何,圆锥曲线,概率与统计,导数算法,线性规划不等式,向量,复数,三视图。选择题40分、填空题30分、解答题80分。这些占分比考生们要根据自身的情况好好的复习,着重要侧重一些重点难点的题型。
首先说一些比较零散的模块,你比如说算出一个五分的小题,还有线性回归会出一个五分的小题,三视图会出一个五分的小题,复数和会各出一道五分的小题,向量有可能出一道五分的小题,也可能不出一道小题,而是放在后面和三角函数结合出一道大题,或者和解析几何结合出一道大题,二项式定理会出一个五分小题上面一是一些非常零碎的小知识点,而从每年的出题规律上看没有什么大的变化,从这一部分题从难度上看也是属于简单题,所以同学们应该重视起来,因为一旦发现自己有不会的地方可以很快的补上了来,前面这些题大概要占到40分左右
高考数学
熊跃农:一般而言,小题是14道,如果都用解大题的方法是不现实的,是没有时间的,解小题要尽可能避开“小题大作”,要小题小做、巧做。选择题有四个,排除了其中三个,另外一个就是肯定的。平时训练的时候,有很多的题,不是直接求解的。要注意积累一些方法,例如你说的排除法,还有数形结合法、图象法、验证法等,都是很好的方法。我来回答;高考数学名师访:有效训练 科学应考2006-05-22 11:10:24 来源: 教育频道专稿 网友评论 1 条 本文共2页 第1页 第2页 一、现阶段如何进行高考数学复习冲刺?
4.审题赶时间。没有将题意看准确,没有理解清楚就匆忙答题,造成解题错误。主持人:各位网友,大家下午好,欢迎来到高考参加教育频道举办的高考名师面对面系列活动。今天我们非常荣幸地邀请到广州开发区中学熊跃农老师,就高考数学复习冲刺等问题进行访谈。
主持人:现在离高考还有17天,现阶段考生应该如何复习。
熊跃农:现在离高考的时间越来越近,只剩半个月了,广大考生进入了临战状态。各位考生手上有很多的复习资料,很多的模拟试题,哪来的时间呢,各位考生的压力是很大的,书山巍巍,题海茫茫啊。有的考生“埋”在书山中,有的考生“泡”在题海里,这都是不科学的。怎样复习进行考前的一搏呢?我想谈点看法,供同学们参考。一是要回课本,重教材。不要冷落了教材,历年高考都强调考基础,考教材,教材是考试内容的载体,是高考命题的依据,是高考试题的主要来源,是学生智能的生长点。二是要织网络,多联系。把中学数学基础知识和基本思想方法纵向、横向、前面、后面联系成网络,因为高考常在知识网络交汇点设计试题。三是要抓主干,抓要点。主要知识点、主要解题方法要熟练。四是要适当练,找感觉。我说的是适当训练,千万不要大量训练陷入题海,题海战术的主要表现是选题随意化,题量扩大化,教法简单化,作机械化。我们反对题海战术,但也不能天天只看题不解题,要保持每天有一定量的解题训练。五是要常锻炼,调心态。从现在起要针对高考的考试时间调整好自己的生物钟,把每天的状态在高考的时间段即上午9:00—11:00、下午3:00—5:00里调整出效果,才能在考试中创造出心境,发挥出水平。
只有这样,才能笑傲高考,才能够把握中学数学知识的精髓,展示自己数学能力的风采。
-------------------------------------------------------------------1.普通高等学校招生数学科的考试,按照“考查基础知识的同时,注重考查能力”的原则,测试中学数学基础知识、基本技能、基本思想和方法,考查思维能力、运算能力、空间想象能力以及运用所学数学知识和方法分析、解决实际问题的能力.数学科的命题,在考查基础知识的基础上,注重对数学思想和方法的考查,注重对数学能力的考查,在强调综合性的同时,重视试题的层次性,合理调控综合程度,坚持多角度、多层次的考查.-------------
二、现在可以做哪些类型的高考数学题型?
主持人:您刚才说现在离高考还有半个月,复习不能走题海战术,也不能不解题,要适当的进行训练,现在而言,应该做哪些类型的题目?
熊跃农:训练要有针对性,近年的高考,应该说试题结构是基本稳定的,而且是紧扣考纲、保持传统、贴近教材的,导向也是鲜明的。我们在训练的时候,要针对自己的“盲点”进行训练,针对高考考查的重要知识点和主要方法进行训练。例如,函数、解析几何、立体几何,在数学试卷中占有较例,构成数学试卷的主体,是高考试题的主要考点,这是三大“巨头”,是历届考生重点训练的考点。我们在训练的时候,要注意审题的细致性,运算的准确性,解题的规范性。这样去训练,才有针对性,才有好的效果。
主持人:现在应针对这些重点寻找适当的训练题,是老师搜集比较好的训练题提供给考生,还是考生自己找一些复习资料做这些练习题?
熊跃农:广大的高三数学教师,许多经过了多次高三的教学实践,他们积累了非常丰富的指导考生进行有效复习的经验,老师作为复习迎考的主导者,从整体上把握着复习的大局,一般都会精选一些颇具针对性的好题给考生进行训练,考生应该按照老师的复习安排,进行强化训练。紧跟老师,巩固知识,跟着老师走,千万不能另搞一套,我行我素,跟着感觉走。要把老师的指导和自己的实际结合起来,找到一个好的结合点,发挥的复习效果。
--------------------------------------------------------------------------------
三、今年高考数学考察的重点知识以及题型
主持人:刚才熊老师也提了往年高考的重点,例如函数、解析几何、立体几何,请您大胆的预测一下,今年的高考如何考查这些知识点和解题的方法?
熊跃农:涛声依旧。试题的结构不会改变,仍然是选择题10道,填空题4道,解答题6道,三类题的分值也不会改变,仍为50、20、80分。选择题和填空题主要用来考中学数学的基本概念和基本运算。在选择题、填空题里面,也会有一些“拦路虎”,使考生感觉某一个选择题、填空题有一定的难度,不过这是极少数的。
解答题主要是考查学生综合运用数学知识分析和解决问题的能力,全面检测考生的数学素养。一般来说,前面的几道题相对比较容易。例如第15、16、17题这几道题是比较容易的。
主持人:请您预测一下前三题和后三题考些什么?
熊跃农:前三道题可能会考三角、数列、概率与统计、立体几何,不一定准确,这是我的分析。从考试大纲的细微变化来看,给人以考三角函数的图象和性质的感觉,但也要提防声东击西。立体几何主要是以棱柱和棱锥为载体命题,可以用传统的方法也可以建立空间坐标系用空间向量的方法来解。
后三题中,可能有应用题,据悉命题组作了许多努力,构建一道源于生活、贴近学生、富有时代气息、设计巧妙的应用问题,有可能在今年高考卷中露脸,这道题或许取代概率与统计题,这样的话,在小题中就会有概率与统计的试题了。函数有可能是与其他的知识融合在一起考,例如函数与导数、函数与数列、函数与不等式等,这样的话,可以从学科整体高度和思维价值的高度来设计试题,考查能力达到必要的深度,试题的难度就比较大。
还有可能出抽象函数的问题,这样的话,对学生的代数推理能力的要求就比较高了。恰恰这方面是考生最薄弱的地方之一,考生会感觉不适应。可能会导致考生“雾里看花”、“一半清醒一半醉”,给考生以漫道雄关之感。
解析几何往往设有二、三问,问相当于一道选择题、填空题的难度。第二问、第三问对思维能力的要求逐步提高,考生可以拾级而上,试题要通过考试区分出不同程度的考生呀。从这些年的试题来看,解析几何往往与轨迹方程有关,与分类讨论有关。还可能以二次曲线为载体,设计成研究型问题、探索型问题、开放型问题,命题人员在考查理性思维上有许多高招,如果这样考的话,思维量和运算量都将比较大。要注意知识点之间的交汇考查,注意考试中对数学思想方法的考查力度。特别是数形结合思想、分类讨论思想、函数与方程思想、等价转化思想等,例如解答小题时,常规方法比较费时,但数形结合思想能转化思维角度,迅速解题等。
主持人:融合了多个知识点,试题就会比较复杂。如何理清这些复杂的知识点,您是否有比较管用的办法,不要被这些考法吓倒。
熊跃农:试题重视考查的层次性,强调能力立意,但也会合理调控综合程度,控制试题难度。平时复习的时候,要多方位联系知识点,不要单个点单个点的复习,要建立网络,近几年的高考题,都是将一些知识点融合在一起的,一套高考试题,一般要考查高中数学知识点138个中的80-90个。试题往往源于课本,高于课本,都是有较高的要求,需要有一定的综合能力才能解答。解题的时候一定要联系知识点。第二知识点运用要准确,数学解题方法的选择要恰当。如果不能得满分,可以得部分的分,能够得多少就得多少,千万不要空白。
--------------------------------------------------------------------------------
四、怎样解决高考数学中的陌生题型?
主持人:一些题目,往往会以创新的形式出现,令考生望而生畏,您怎样看待这个问题?
主持人:创新题分值大概占多少?
熊跃农:这类题一般为5~15分。
主持人:如果碰到这样的题,题目比较新颖,考生一下子无法找到知识点,应该如何入手,有什么好的解决办法?
熊跃农:细致审题,掌握框架,分清层次,展开联想,寻找联系,各个击破。如果想了两分钟仍然没有思路,就要跳过去,解后面的题,看是否可以通过解后面的题得出某种启发,一旦有了思路,“杀一回马枪”再解答,如果通过解后面的题,仍然没有什么启发,这个时候需要果断——猜测!能大胆猜测也是一种能力。
--------------------------------------------------------------------------------
五、高考数学常见的失分点有哪些?
主持人:有网友反应,自己原以为自己都做出来了,知识点都运用了,但是得分的时候,自己不注意的地方失分了,您认为高考中常见的失分有哪些情形?
熊跃农:从往年高考答卷中可以看出,考生卷面上大量出现“会而不对”、“对而不全”的现象。考生失分主要表现在方面:
1.解题速度慢。导致后面的解答题没有时间做,连看题都没有时间了。解题速度缓慢的原因就是不熟练,基础知识不熟练,基本方法不熟练,这是平时训练不够所致,所以我们经常说回归课本,目的就是要让考生全面、系统地掌握课本中的基础知识和基本方法,吃透课本中的例题和习题。
2.运算错误多。答卷的时候,经常会犯一些低级的错误,别人不会犯的错误他会犯,这是运算能力的问题,不能简单的说是粗心大意,这方面要加强运算能力的训练。
3.答题不规范。一道题作完了,自己以为是对的,自认为是满分。其实大打折扣,主要是因为答题不规范,丢三拉四,想当然,跳步,例如解应用题没有作答,求函数解析式没有写出定义域,求二面角的度数没有先证明某某角是二面角的平面角,乱用数学符号,乱造数学符号等等。自己丢分了,还不知道。
5.心理素质。有的考生考试时很紧张,结果可以想出来的,都没有想出来。
导致考试失分的原因很多,主要是这几点,这些要在平时的模拟考试中克服,积累考试的经验,按理说,一个高中生身经百“考”,应该有较丰富的应考经验。
--------------------------------------------------------------------------------
六、如何提高高考数学的解题速度?
主持人:解题的速度跟不上,刚好有一个网友也问了,数学答题的速度太慢了,如何提高解题的速度?
另外,草稿的使用也有讲究,可将草稿纸对折对折再对折,这样就有16个矩形区域,给每个区域编号就可对应16个题,这样做的好处在于检查某些运算有无错误时,不要到处找运算过程,浪费时间和精力。做解答题要先审题,理清思路,加强心算,争取一挥而就,下笔有神,落笔成功,尽量不用草稿纸。
主持人:现在是否可以通过限时的训练,自己给自己限定时间,做相应的题目,例如要找平时做题慢的原因,有可能是做解答题慢,这样是否有帮助?
熊跃农:这是非常好的办法,有的考生自己做了一个“错题本”,将历次考试中做错了的题都记录下来,针对这些错误的题进行限时训练,这是非常有效的训练。错题本基本上浓缩了高中数学的重点、难点、基点以及自己学习过程中的“盲点”。要安排足够时间整理知识方法,反思考卷,查漏补缺。
主持人:“错题本”记录的是考生个人失分的情况,结合“错题本”进行训练,是很好的办法。
--------------------------------------------------------------------------------
七、对于基础中上等的同学,想提高10分应该怎么办?
熊跃农:抓紧时间,科学安排,有效复习半个月,从110分跨越到120分是完全可能的,心态好还会突破120分。
主持人:他的基础比较好,选择题、填空题可以拿到不少的分,失分可能是后面的大题目,他怎样可以提高后面六道解答题的分值?
熊跃农:时间的分布要合理,在前面的14道小题中,要将解题时间控制在50分钟左右。加快提高选择题、填空题的速度。还要注意几个方面,是审题要更准确。审题是不能赶时间的。第二是答题要更规范,特别是平时容易失分的地方,要特别的注意答题的规范性。第三是运算要更准确。要运用“四先四后”的策略答题,即先易后难,先做容易的题,后做难的题;先熟后生,先做熟悉的题,后做陌生的题;先多后少,先做分值多的题,之后做分值少的题;先同后异,先做同分支的题,如函数、三角,知识、方法间容易沟通,再做不同分支的题。这样就保证后面有时间、有信心突破难题。
--------------------------------------------------------------------------------
主持人:这是中等以上成绩的考生问的,还有一些考生问平时的成绩还是可以的,平时就可以考120、130分,如何冲击满分和高分。
熊跃农:这样的考生较有实力,能稳定在120分、130分,说明考生的数学基础、数学素养是比较好的,数学解题能力是比较强的。冲击高分和满分,综合素质要很好,很大程度上取决于考生当时的心态和状态,高分或满分的获得有一定的偶然性,某次考试考出了高分或满分,但换一套试题就不一定了。
--------------------------------------------------------------------------------
九、如何克服紧张心理正常、甚至超常发挥?
主持人:在考试的时候,如何克服紧张的心理,将正常的水平发挥出来甚至超常的发挥,您对这样的问题有什么样的建议?
--------------------------------------------------------------------------------
主持人:选择题是否有解题的技巧,以前上学的时候,老师说有排除法,不同的试题,运用的方法也是不同的。
主持人:考到一些函数、三角题的时候,有什么样的方法?
函数问题要有图象意识,要多画图象,三角问题要熟练画出图象,解决单调区间、周期、对称轴、对称中心等问题,化简三角函数式,对三角函数式的取值范围作出估计,是计算能力的重要方面,要记准三角公式,灵活运用三角公式解题。
熊跃农:立体几何主要是考查证明位置关系、求角、求距离、求体积,考查考生的空间想象能力。这里面比较难的就是求二面角的问题,历来都是难点,一旦考了二面角,很多的考生心里就有恐惧感。从往年高考答题情况看,不少考生对二面角的概念不清楚。要从二面角概念入手,要进行相关的训练,适当训练二面角的求法。
主持人:解立体几何题的时候可以用传统的方法,也可以用向量的方法,如果碰到二面角的难题,用什么样的办法比较好一点?
熊跃农:如果立体几何题建立空间坐标系比较方便的话,我们用坐标系的方法求解,可以将二面角的计算转化为有关向量的计算问题,这样可以减小思维上、推理上的难度。
熊跃农:函数主要是考函数的性质,函数的定义域、值域、奇偶性、单调性、周期性、对称性,这些性质必须熟练掌握。函数的问题如果不是抽象函数的话,可以画图帮助理解。这样就可以获得一些感性上的信息,帮助我们分析问题,要多画图。
主持人:多画图解决函数的问题。
熊跃农:是的。
--------------------------------------------------------------------------------
十一、如何看待数学模拟考试的参考价值?
熊跃农:广州的一、二模从命题的角度来看,我认为命题质量是很好的,命题老师水平是很高的。试题基本上覆盖了高考的主要考点和重要的数学方法。一模的数据可信度大一点,因为是统改,统一评卷,二模是各个学校根据市教研室的评分标准自行评卷,这样不是很客观,这样的话,对填报志愿来说,按照一模的成绩作为参考较好。
主持人:刚才已经说了六道大题,能拿多少分,就拿多少分,因为有的题目是分几个小问的,请具体指导考生如何尽量的拿全部的分数,或者是如何让考生拿到步骤分?
熊跃农:现在很多的考生是因为时间不够,后面的题目审读时间就少,白白送掉了一些可以得到的分数。前面的时间要压缩,不能够拖延时间。要熟练的掌握一些解题的方法,例如一些好的解答方法,节省时间解答后面的题。
还有一些学生看了一个题,不会做,就不做。一个字也不写,这是很可怕的。我们可以将题目条件中的文字语言,转化成数学符号语言,再向前走一步,就有分了。例如椭圆的离心率告诉你是二分之一,一般都会写出来c/a=1/2,再向前进一步就是a=2c,再进一步代入a,b,c的关系式,这样就可以得分了,要将可以看得懂的条件全部转化成数学符号语言。
主持人:一道题可以大胆的将知道的公式写出来,套一下。
熊跃农:将每一个知道的和公式写出来,向前走一步,这样走着走着,题就不多解出来了。不要看题目总体做不出来,就不做,这样是很亏的,读懂每一句话,转化每一个条件,向前走一步,分数会找你。
--------------------------------------------------------------------------------
十二、考前每天要做8-10道题保持状态
主持人:今天的访谈接近尾声了,熊老师请您用对考生说几句话。
熊跃农:我们还是要求考生每天严格规范地做一定数量的题,例如8—10道题,这样才可以处于保温的状态。如果一段时间不解题,就陌生了。
主持人:每天8—10道题是什么样的题型都包括吗?
熊跃农:是的,选择、填空、解答题可按4、2、2或4、3、2配置,要有的训练,要将主要的知识点分散开来进行训练,制定好训练,今天是这几个知识点,明天是另外的几个知识点,这样天天练,保持良好的感觉,高考的时候就有比较好的感觉。
主持人:考前的一个星期,学校让学生放松一下,这样也要做题吗?
熊跃农:是的,不能完全放松。我们在策略上应该注意这个问题,完全放弃的话,在高考的时候就会感觉到很吃力,很陌生,每天保持做一定量的题,而且要限定时间进行训练,这样的话就能够轻装上阵,保持良好的感觉。
刚才说了“错题本”还是要经常看看,这是一本适合自己的的资料,我教过一个考生,高考复习的时候,因为自己建立了一本错题集,在临考的一、二个月,很多的考生找了大量的书来看,找了大量的题来做,这位考生就是看错题集,因为不懂的都在里面,她把书读“薄”了,结果高考的时候得了满分,这个例子说明设立“错题本”进行反思学习,可以帮生提高成绩。
主持人:刚才熊老师补充了两点,个是保持作题的感觉,每天8—10道题,第二是多看题,有针对性的,多看作错的题,要比找资料的效果明显得多。
主持人:老师对广大的考生有什么寄予?
熊跃农:希望广大考生心无旁骛,心静如水,轻装上阵,笑傲高考。
主持人:非常感谢熊老师,也非常感谢网友光临教育频道高考名师面对面,16:00—17:00省实验中学的林家明老师将会继续作客,请各位网友继续关注我们的访谈。非常感谢熊老师,也非常感谢网友热心参与 4035
因为F(x)是连续偶函数,且当x大于0时 F(x)是单调函数,
所以由F(x)=F({x+3}/{x+4})可以得到:
x=(x+3)/(x+4)
或者x=-(x+3)/(x+4)
可以得到x之和为-8.选C
汗。。。你们都好快哦
其实很好做
你可以用设法。。如果真的不会做这题的话
因为是连续偶函数,且当x大于0时 F(x)是单调函数
所以设F(x)=X^2
所以有X^2={(x+3)/(x+4)}^2
解得X=-8
因为f(x)是连续偶函数且在x>0单调
f(x)=f(x+3/x+4)
x=-(x+3)/(x+4)
x^2+4x=-x-3
x^2+5x+3=0
x1+x2=-5
x=(x+3)/(x+4)
x(x+4)=x+3
xx+3x-3=0
x1+x2=-3
C.-8
x=(x+3)/(x+4)
or x=-(x+3)/(x+4)
xuan c
-8
高考数学题型范围是什么?
熊跃农:克服紧张情绪,以平和的心态参加考试,合理支配考试时间,这是考试大纲对考生的个性品质方面的要求。考生考了那么多次,应该积累了一些应考的经验。平时模拟考试的时候,自己应该注意一些这方面的训练,注意这方面的统计。例如统计解题的时间,解选择题、填空题、解答题的时间分别是多少,通过这样的数据分析自己的实力,2概率(有可能和线性规划,函数联系,也不会难的,只要考虑周全)通过这样的训练、统计,心理就有底了,高考跟平时的考试时量是一样的,这样将平时的考试当做高考,从心理调节、时间分配、节奏掌握等方面不断调试,逐步适应,这样高考的时候就把高考当做平时的考试,这样就不紧张了,要反复训练,有备而战。平时知识方法记在心中,考时喜悦笑意写在脸上。高考数学熊跃农:各位网友,下午好,很感谢教育频道给我们提供了相互交流、学习的机会。我是广州开发区中学数学高级教师,迄今为止教中学数学26年,有一半时间是在高三摸爬滚打。题型范围是什么?高考考生以在职成年人为主,考虑此类考生的特点,灵活的业余学习形式就成了多数高校的。下面本小编为大家解答一下关于高考相关信息,希望对大家有所帮助!
大家告诉我对待高等数学,应该如果去归纳总结么,能够详细点?谢谢了
熊跃农:高考年年考,试题年年新。创新是高考的生命。每年的高考试题中都有一道或者两道创新的题目,成为当年高考试题的亮点。新在何处呢?比如,的、非常规的知识综合,大跨度的知识迁移、远距离的知识交汇,某些问题还在背景、方法上实现迁移。创新的题一般分布在填空题和选择题当中,小题(指填空题、选择题)是高考命题改革的“试验田”。创新的试题可以考察学生的创新思维,考察学生接受新事物、解决新问题的能力,新颖的题对于考生来说,是一种实实在在的难度,因为考生从来没有见过,从认识到理解、到分析到解决,需要一个过程,所以感觉难。试题会较好地控制新颖题的难度,做到新题不难,难题不怪。当然这类题不会多,新颖题+新颖题+新颖题≠好试卷。绝大部分的题应是常规题,背景是考生熟悉的,重点考查通性通法,淡化特殊技巧,所以考生不必忧惧。介绍一篇文章:新生怎样学好高等数学?(转载)
新生入学后常有“上了大学为何还学数学”,“学数学有什么用”等疑惑。不仅专本科阶段学数学,硕士、博士阶段还要学数学,而且学更高层次的内容。如果你从事管理、工程技术类工作也要继续学习数学。高等数学是必修的基础理论课,它对学生各专业课程的学习,以及毕业后从事各类管理、工程技术工作均起着奠基的作用。尤其是在科学技术日新月异的今天,数学方法已广泛运用到科技的各个领域。因此,对大学生而言,一个明确的任务就是要学好高等数学这门课程,为以后的学习和工作打下良好的基础。
那么,新生怎样才能学好高等数学呢?这里谈几点看法,供同学们参考。
一、对高等数学课要有正确的认识
高等数学虽然只是现代数学的基础,但它能完成很多现实的任务。通过学习高等数学,能够提高学生分析问题解决问题的能力,使他们掌握良好的学习方法、培养敏锐的科学思维。所以,数学被人们称为“智慧的体”。关于高等数学的用途,我举3个例子加以说明:
其一,火力发电厂冷却塔的外形为什么要做成弯曲状,而不是像烟囱一样笔直的?其中原因就是冷却塔体积大,自重非常大,如果做成直的,那么最下面的建筑材料不能承受巨大的压力(我们知道,地球上的山峰只能达到3万米,否则最下面的岩石都要融化了)。把冷却塔的边缘做成双曲面的形状,正好能够让每一截面的压力相等,这样,冷却塔就能做得很大了。为什么会是双曲面?用高等数学中的微积分理论不到5分钟就能够解决。
其二,大家对计算机都很熟悉,但是如果没有数学原理和方法,计算机可以说是一堆“废铜烂铁”。因为,从根本上讲,计算机只会做加法,我们常说的多少亿次实际上就是指加法运算。其它复杂计算必须转化加法才能够实施,这个转化过程就要用到高等数学的知识。如对数计算,实际上就运用微积分的级数理论,可以把对数函数转换为一系列乘法和加法运算。
其三,我国数学家吴文俊提出的“吴方法”,是一种数学理论和方法,人们用它已经解决了几何定理机器证明、机床设计、电路设计、机器人轨迹问题,曲面拼接等诸多高端科技问题,享誉世界。在这些前沿科学问题中“吴方法”起着关键技术的作用主持人:函数如何复习?,因此,目前出现了“数学技术”这个词。
可以说数学无处不在。现代科学如果没有微积分(高等数学的主要内容),就首先一定要记住原理和理论,在做大题的时候步骤要规范,尤其是对于一些解,因为所以这些做题符号要特别的关注,可以多做一些题的专项训练,这样对于你掌握这类型题有着很大的帮助;在做完题之后一定要检查,这样的话能够帮助你改掉粗心的毛病。不能称之为科学,这就是高等数学的作用。
二、尽快摈弃中学的学习方法,了解掌握大学的学习方法
三、学习基本概念、基本思想是重中之重,掌握核心思想和方法是目的
大学阶段的学习不能为应付考试,重要的是学习每门课程的内涵,即思想方法。高等数学中,为了提出或建立一种思想和方法,总要有基本概念、基本结论作为铺垫。如果对这些概念和基本结论掌握不好,就很难掌握其内在的核心思想和方法。学习高等数学的过程也是新的认识观念的建立过程,如有限数学过渡到无限数学的过程就是认知的一个飞跃。新生往往认识不到学习基本概念、基本结论的重要性,只从文字表面上理解,忽略思想观念的转变,导致学习吃力,失去兴趣、甚至厌学。其实,高等数学的学习难点在于对基本概念、结论的准确理解、灵活运用,以及动态变化观念的建立上。突破了这一难点,很多问题迎刃而解。
四、把握四个环节,提高学习效率
,课前预习。了解老师即将讲什么内容,相应地复习与之相关内容,有的放矢,主动学习。第二,认真上课。听课是一个全身心投入——听、记、思考相结合的过程。注意老师的讲解方法、思路,以及分析问题和解决问题的过程,同时关注你预习时遇到的问题,记好课堂笔记。第三,课后复习,循序渐进。当天必须回忆一下老师讲课内容,然后结合笔记重复看教材内容,完善笔记,掌握所学内容之间的联系,完成作业。做作业时从中总结、提炼学过的知识、思想和方法,在比较中构筑知识结构的框架;要经常复习、巩固学过的内容,进行循环学习;学会归纳、总结。第四,整体把握,不能断链。高等数学是一条完整的锁链,一环扣一环。对任何一个环节掌握不好将影响整个学习进程。特别注意将要讲到的函数和极限的概念,这是高等数学的“地基”,直接影响后续学习。如果不进行整体掌握,很容易在大量概念、结论和题海中“淹没”。
五、培养创造性思维和用数学方法解决问题的能力
学习一门课程要思考其延伸的作用。学习高等数学不能只学数学知识,还应该努力培养自己创造性思维和运用数学的能力,尤其是数学模型的意识。高等数学充分体现了逻辑思维、抽象思维、类比思维、归纳思维、发散思维、逆向思维等创造性思维,学生应通过高等数学这一载体很好地体验这些思维方式,提高自己的科学思维能力。所谓数学意识,是指用数学知识的心理倾向性。它包含两方面的意义:一方面,当你面临有待解决的问题时,能主动尝试用数学的立场、观点和方法寻求解决问题的策略;另一方面,当你接受一个新的数学理论时(可能学习更多的数学分支),能主动地探索这一新知识的来龙去脉和实用价值,为此贯穿的数学思维将起到直接或潜移默化的作用。这就需要学生在学习中努力树立数学观念并提高对数学的悟性。所谓建立数学模型的意识是指遇到实际问题时,我们用所学的知识建立该问题对应的数学问题(数学模型),在解答数学问题的同时,解决原有的实际问题。我们在学习过程中将遇到很多这样的应用例子,请认真总结这些例子,归纳提升为通用方法,学习其它课程时有意去思考能否用这些方法处理本学科的问题。
高考数学答题的时候有哪些实用技巧?有哪些需要注意的呢?
主持人:如果考生的运算主持熊跃农:如果有函数图象的选择题,我们可以取一个点代入就可以找到。不等式的解集有A、B、C、D四个进行判断,只要取某个或某几个值代入就可以找到。这样就会节省很多的时间,这要有一定的数学基础的同学才可以马上想到这些方法的,很多考生习惯了直接法,读完题就动笔演算,这样就亏了。这启发我们,拿到了题要先想一下特殊方法,实在没有办法再直接解答,这样你会发现常常有捷径。人:熊老师,首先请您进行自我介绍!能力比较好的话,这样做也好。高中学好数学的方法技巧有哪些
例如:下题就是一道不等式和解析几何、数列结合的题1. 掌握基础反之亦然;上一题选什么,这一题选什么,连续有三个相同的则不;以上都不知识:高中数学是建立在初中数学的基础上的,因此要时刻回顾、掌握初中数学的基础知识,扎实基础。
(3)量化突出.数量关系是数学领域研究的一个重要方面,也是数学测试不可缺少的内容,因此数学试题中定量性占有较重.试题中的定量要求一般不是简单、机械的计算,而是把概念、法则、性质寓于计算之中,在运算过程中考查考生对算理、运算法则的理解程度、灵活运用的能力及准确严谨的科学态度.由此可见,突出量化是数学试题的一个明显特点,并有重要的意义.2. 理解概念:高中数学有很多重要的概念,例如函数、导数、积分等。学生在学习这些概念时不仅要记住定义和公式,还要理解它们的实质含义。
3. 理论结合实践:数学理论和实践结合紧密,学生应该尽可能多地尝试解题和模拟实验,把所学的知识应用到实际作中。这样有助于深化理解和记忆知识点。
4. 培养兴趣:数学有很强的创造性和趣味性,在学习过程中注重培养自己的兴趣,尝试自己设计问题和解决问题,不断提高自己的思维品质。
希望以上建议能够对你有所帮助,帮助你顺利学好高中数学。
高考数学题的难度是如何规定的?理科生做数学题的时候有哪些得分技巧?
主持人:广州的一、二模都已经结束了,如何看待自己在一、二模中的成绩,是否有参考的价值?一般难度都是选择20%的简单题,60%的中等题,还有百分之20的难度题。做数学题的时候先把简单的和中等的给做完,简单题要多检查几遍,难题先把公式写上到几个,中等题要多研究一下,可以整体算一下分数。
高考的卷难度是根真算。提高自己运算能力,也就是加强算功。将运算进行到底,应当始终成为高考复习的一个原则。注重算法,算理。在平时运算时应注重精算、心算、悟算、不算的训练,注重把握好运算方向,选择好的运算公式,避免盲目运算。据全国规定额的大纲额设定的一套试卷,主要是我们学生之间的一个水平。理科生的数学解题技巧与平时的训练和老师的教学有关系。用多做练习和多解题来提高数学成绩。
数学考试题的标准是30%的基础分,加50%的中级体和20%的难度题。每次的数学考察的重点是学生的思维能力和理解能力。要去用数学的思维来解决问题。在做题的时候可以先把所有的题都过一次,这样就可以做到心里有数,有哪一些题是比较难的,有哪一些题是比较简单的?可以选择先去解答自己都会比较简单的题。
按照题的难易程度进行分配,一定要有30%的基础题,同时也要有50%的中等题,剩下的20%要有一些难度。要巧妙的利用题干中的信息,同时也要注意知识点的定位(10)、新课标《数学数学基础》、《高等数学》、《数学统计》。写步骤的时候一定要清晰。
要有30%的基础题,要有50%的中等题,也要包含20%的高难度题。要合理的利用反向的方法进行思考。一定要抓住问题的核心,同时也要调整做题的顺序。