摘要:二年级乘法公式有哪些? 乘法:因数x因数=积积÷因数+因数。 小学二年级数学公式及定律 二年级数学公式和定律
二年级乘法公式有哪些?
乘法:因数x因数=积积÷因数+因数。
小学二年级数学公式及定律 二年级数学公式和定律
小学二年级数学公式及定律 二年级数学公式和定律
小学二年级数学公式及定律 二年级数学公式和定律
除法:被除数÷除数=商商x除数=被除数被除数÷商=除数。
1.加法运算定律:a+b=b+a(a+b)+c=a+(b+c)。
2.乘法运算规律:a×b=b×a(axb)×c=a×(b×c)a×(b+c)=ab+ac。
3.减法运算性质:a-(b+c)=a-b-c。
4.除法运算性质:被除数和除数同时扩大或者缩小相同的倍数,商不变。
学数学的小窍门
1、学数学要善于思考,自己想出来的远比别人讲出来的印象深刻。
2、课前要做好预习,这样上数学课时才能把不会的知识点更好的消化吸收掉。
3、数学公式一定要记熟,并且还要会推导,能举一反三。
4、学好数学基础的就是把课本知识点及课后习题都掌握好。
5、数学80%的分数来源于基础知识,20%的分数属于难点,所以考120分并不难。
小学数学公式大全1到6年级完整版
数学公式是解题的关键,那么小学数学1到6年级公式有哪些呢?快来和我一起看看吧。下面是由我为大家整理的“小学数学公式大全1到6年级完整版”,仅供参考,欢迎大家阅读。
小学数学公式大全1到6年级完整版
一、小学一年级数学公式:
(一)小学数学加减运算公式
加数 + 加数 = 和(交换加数的位置和不变)。
被减数–减数 = 。
和 = 加数 + 加数 = 被减数–减数。
和–加数 = 另一个加数被减数– = 减数。
另一个加数 = 和–加数减数= 被减数–。
+ 减数 = 被减数。
被减数 = + 减数。
求大数比小数多多少,用减法(-)计算。
求小数比大数少多少,用减法(-)计算。
大数=小数+多出来的数小数=大数—多出来的数多出来的数=大数—小数。
在“︸”下面就是求总数,用加法(+)计算。
在“︸”上面就是求部分,用减法(-)计算。
(三)时针与分针(时针短,分针长)
1时=60分。
60分=1时。
1刻=15分。
分针指着12是整时,时针指着数字几就是几时。
分针指着6是半时,时针过数字几就是几时半。
(四)元角分
1元=10角。
1角=10分。
1元=100分。
(五)图文应用题
先找出已知条件和问题,再确定用加法或减法计算,后记得要写答。
求一共是多少,用加法(+)计算。
求还有、还剩、剩下是多少,用减法(-)计算。
二、小学二年级数学公式
(一)被除数、除数、商
被除数÷除数=商,
被除数÷商=除数,
商×除数=被除数,
除数×商+余数=被除数
(二)四则运算定律
加法交换律:a+b=b+a,
加法结合律:(a+b)+c=a+(b+c),
乘法交换律:ab=ba,
乘法结合律:(ab)c=a(bc),
乘法分配律:(a±b)c=ac±bc。
(三)四则混合运算
在四则运算中,加法和减法称为级运算,乘法和除法称为第二级运算。
在没有括号的算式里,如果只含有同一级运算,要从左往右一次计算;如果含有两级运算,要先做第二级运算,再做级运算。
在有括号的算式里,要先算括号里面的,如果既有小括号又有中括号,要先算小括号里面的,再算中括号里面的,后算括号外面的。
(四)小学数学减法的基本性质
a-(b+c)=a-b-c
a-b-c=a-(b+c)
三、小学三年级数学公式
每份数×份数=总数,
总数÷每份数=份数,
总数÷份数=每份数,
1倍数×倍数=几倍数,
几倍数÷1倍数=倍数,
几倍数÷倍数=1倍数,
速度×时间=路程,
路程÷速度=时间,
路程÷时间=速度,
单价×数量=总价,
总价÷单价=数量,
总价÷数量=单价,
工作效率×工作时间=工作总量,
工作总量÷工作效率=工作时间,
工作总量÷工作时间=工作效率,
因数×因数=积,
积÷一个因数=另一个因数,
被除数÷除数=商,
被除数÷商=除数,
商×除数=被除数,
周长:围成一个封闭图形的所有边长的总和叫做周长,
正方形周长:边长+边长+边长+边长=周长或边长4=周长,
正方形的特点:四条边相等,四个直角,
长方形周长:长+长+宽+宽=周长 (长+宽)2=周长,
长方形的特点:对边平行且相等四个直角,
平行四边形的特点:对边平行且相等容易变形没有直角且对角相等。
四、小学4~6年级数学公式
(一)正方形面积(周长C、面积S、边长a)
周长=边长×4,
C=4a;
面积=边长×边长,
S=a×a;
(二)正方体体积(体积V 、棱长a)
表面积=棱长×棱长×6,
S表=a×a×6;
体积=棱长×棱长×棱长,
V=a×a×a;
(三)长方形面积(周长C、面积S、边长a)
周长=(长+宽)×2,
C=2(a+b);
面积=长×宽,
S=ab;
(四)长方体体积(体积V 、棱长a、长a、宽b、高h)
(1)表面积(长×宽+长×高+宽×高)×2,
S=2(ab+ah+bh);
(2)体积=长×宽×高,
V=abh;
(五)三角形(面积s、底a、高h)
s面积 a底 h高,
面积=底×高÷2,
s=ah÷2,
三角形高=面积×2÷底,
三角形底=面积×2÷高,
(六)平行四边形(面积s、底a、高h)
面积=底×高,
s=ah;
(七)梯形(面积s、上底a、底b、高h)
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
(八)圆形(S面积 C周长∏ d=直径 r=半径)
1.周长=直径×∏=2×∏×半径
C=∏d=2∏r
2.面积=半径×半径×∏
(九)圆柱体(v:体积 h:高 s;底面积 r:底面半径 c:底面周长)
1.侧面积=底面周长×高
2.表面积=侧面积+底面积×2
3.体积=底面积×高
4.体积=侧面积÷2×半径
(十)小学数学相遇问题的公式
相遇路程=速度和×相遇时间,
相遇时间=相遇路程÷速度和,
速度和=相遇路程÷相遇时间。
(十一)追及问题
追及距离=速度×追及时间,
追及时间=追及距离÷速度,
速度=追及距离÷追及时间。
(十二)小学数学算术方面公式
1.等式:等号左边的数值与等号右边的数值相等的式子叫做等式
等式的基本性质:
等式两边同时加上(或减去)一个相同的数,等式仍然成立
等式两边同时乘以(或除以)一个相同的数(0除外),等式仍然成立。
2.方程式:含有未知数的等式叫方程式。
3.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
4.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
5.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
6.真分数:分子比分母小的分数叫做真分数。
7.分数:分子比分母大或者分子和分母相等的分数叫做分数。分数大于或等于1。
8.带分数:把分数写成整数和真分数的形式,叫做带分数。
9.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
拓展阅读:小学数学学习方法
思考
思考是数学学习方法的核心。在学这门课中,思考有重大意义。解数学题时,首先要观察、分析、思考。思考往往能发现题目的特点,找出解题的突破口、简便的解题方法。在我们周围,凡是真正学得好的同学,都有勤于思考,经常开动脑筋的习惯,于是脑子就越用越灵,勤于思考变成了善于思考。我正因为掌握应用了这一方法,所以在全国数学竞赛中获得了武汉市一等奖。
动手试一试
动手有助于消化学习过的知识,做到融会贯通。课下,我常常把老师讲过的公式进行推导,推导时不要看书,要默记。这样就能使自己对公式掌握滚瓜烂熟,可为公式变形计算打下扎实的基础。
培养创造精神
所谓创造,就是想出新办法,做出新成绩,建立新理论。创造,就要不局限于老师、课本讲的方法。平时,有一些难度高的题目,我在听懂了老师讲的方法后,还要自己去找一找有没有另外的解法,这样能加深对题目的理解,能比较几种解法的利弊,使解题思维达到一个更高的境界。
认真听老师讲课
这是我取得好成绩的'主要原因。听讲时要做到全神贯注,聚精会神,跟着老师的思路走,不能开小,更切忌一边讲话一边听讲。其次要专心凝听老师讲的每一个字,因为数学是以严谨著称的,一字之就非同小可,一字之间就隐藏玄机无限。听讲时还要注意记笔记。一次老师讲了一个高难度的几何题,我一时没有听懂,多亏我记下了这道题以及解法,回家后仔细琢磨,终于理解透了,以至在一次竞赛中我轻而易举地解出了类似的一道题,获得了宝贵的10分。上课还要积极举手发言,举手发言的好处可真不少!
①可以巩固当堂学到的知识。
②锻炼了自己的口才。
③那些模糊不清的观念和错误能得到老师的指教。真是一举三得。总之,听讲要做到手到、口到、眼到、耳到、心到。
课外练习
孔子曰:“学而时习之”。课后作业也是学习和巩固数学的重要环节。我很注意解题的精度和速度。精度就是准确度,专心致志地完成作业,力求一次性准确,而一旦有了错,要及时改正。而速度是为了锻炼自己注意力集中,有紧迫感。我经常是这样做的,在开始做作业时定好闹钟,放在自己看不见的地方再做作业,这样有助于提高作业速度。考试时,就不会紧张,也不会顾此失彼了。
复习、预习
对数学的复习,预习我定在每天晚上,在完成当天作业后,我将第二天要学的新知识简要地看一看,再回忆一下老师已讲过的内容。睡觉时躺在床上,脑海里再像看电影一样将老师上课的过程“看”一遍,如果有什么疑难,我立即爬起来看书,直到搞懂为止。每个星期天我还作一星期功课的小结复习、预习。这样对学数学有好处,并掌握得牢固,就不会忘记了。
小学二年级数学上册苏教版 的重点内容,公式?
①加数+加数=和
和-一个加数=另一个加数
②被减数-减数=
被减数-=减数
+减数=被减数
③因数×因数=积
积÷一个因数=另一个因数
④被除数÷除数=商
被除数÷商=除数
商×除数=被除数
除数×商+余数=被除数.比
比的意义:两个数相除又叫作两个数的比。
根据比的意义可以求比值;求比值的方法:用前向除以后项。
比的基本性质:比的前项和后项都乘或除以相同的数(0除外)比值不变。应用比的基本性质可以化简比。
.四则混合运算
①在四则运算中,加法和减法称为级运算,乘法和除法称为第二级运算。
②在没有括号的算式里,如果只含有同一级运算,要从左往右一次计算;如果含有两级运算,要先做第二级运算,再做级运算。
③在有括号的算式里,要先算括号里面的,如果既有小括号又有中括号,要先算小括号里面的,再算中括号里面的,后算括号外面的。
39.分数、百分数应用题
单位“1”已知,用乘法。单位“1”未知,用除法。
①求一个数是另一个数的几(百)分之几?
基本公式:前一个数÷后一个数(比较量÷标准量)
②求一个数的几(百)分之几或几倍是多少?(单位“1”已知)
基本公式:单位“1”的量×分率=分率对应的量
③已知一个数的几(百)分之几是多少,求这个数.(单位“1”未知用除法或方程)
基本公式:分率对应的数量÷分率=单位“1”的量或者列方程解。
④已知两个数,求一个数比另一个数多几分之几。
已知两个数,求一个数比另一个数多百分之几。
已知两个数,求一个数比另一个数少几分之几。
已知两个数,求一个数比另一个数少百分之几。
基本公式:两个数的÷单位“1”的量(标准量本金:存入银行的钱叫本金。利息:取款时银行多支付的钱叫利息。利率:利息与本金的百分比叫做利率。
②利息计算公式:利息=本金×时间×利率
利息税=本金×时间×利率×5%
41.四则运算定律
加法交换律:a+b=b+a,
加法结合律:(a+b)+c=a+(b+c)
乘法交换律:ab=ba,
乘法结合律:(ab)c=a(bc)
乘法分配律:(a±b)c=ac±bc
运算性质
①减法的基本性质:a-(b+c)=a-b-c
a-b-c=a-(b+c)
②除法的基本性质:a÷b÷c=a÷(b×c)
(a±b)÷c=a÷c±b÷c1、长方形的周长=(长+宽)×2C=(a+b)×2
2、正方形的周长=边长×4C=4a
3、长方形的面积=长×宽S=ab
4、正方形的面积=边长×边长S=a.a=a
5、三角形的面积=底×高÷2S=ah÷2
6、平行四边形的面积=底×高S=ah
7、梯形的面积=(上底+下底)×高÷2S=(a+b)h÷2
8、直径=半径×2d=2r半径=直径÷2r=d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2c=πd=2πr
10、圆的面积=圆周率×半径×半径?=πr
11、长方体的表面积=(长×宽+长×高+宽×高)×2
12、长方体的体积=长×宽×高V=abh
13、正方体的表面积=棱长×棱长×6S=6a
14、正方体的体积=棱长×棱长×棱长V=a.a.a=a
15、圆柱的侧面积=底面圆的周长×高S=ch
16、圆柱的表面积=上下底面面积+侧面积
S=2πr+2πrh=2π(d÷2)+2π(d÷2)h=2π(C÷2÷π)+Ch
17、圆柱的体积=底面积×高V=Sh
V=πrh=π(d÷2)h=π(C÷2÷π)h
18、圆锥的体积=底面积×高÷3
V=Sh÷3=πrh÷3=π(d÷2)h÷3=π(C÷2÷π)h÷3
19、长方体(正方体、圆柱体)的体
1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数
2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数
3、速度×时间=路程路程÷速度=时间路程÷时间=速度
4、单价×数量=总价总价÷单价=数量总价÷数量=单价
5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率
6、加数+加数=和和-一个加数=另一个加数
7、被减数-减数=被减数-=减数+减数=被减数
8、因数×因数=积积÷一个因数=另一个因数
9、被除数÷除数=商被除数÷商=除数商×除数=被除数
小学数学图形计算公式
1、正方形C周长S面积a边长周长=边长×4C=4a面积=边长×边长S=a×a
2、正方体V:体积a:棱长表面积=棱长×棱长×6S表=a×a×6体积=棱长×棱长×棱长V=a×a×a
3、长方形
C周长S面积a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4、长方体
V:体积s:面积a:长b:宽h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5三角形
s面积a底h高
面积=底×高÷2
s=ah÷2
三角形高=面积×2÷底
三角形底=面积×2÷高
6平行四边形
s面积a底h高
面积=底×高s=ah
7梯形
s面积a上底b下底h高
面积=(上底+下底)×高÷2
s=(a+b)×h÷2
8圆形
S面积C周长∏d=直径r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9圆柱体
v:体积h:高s;底面积r:底面半径c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10圆锥体
v:体积h:高s;底面积r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和问题
(和+)÷2=大数(和-)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者和-小数=大数)
倍问题
÷(倍数-1)=小数
小数×倍数=大数
(或小数+=大数)
植树问题
1非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之=参加分配的份数
(大盈-小盈)÷两次分配量之=参加分配的份数
(大亏-小亏)÷两次分配量之=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度×追及时间
追及时间=追及距离÷速度
速度=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×=(售出价÷成本-1)×
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
时间单位换算
1世纪=100年1年=12月
大月(31天)有:135781012月
小月(30天)的有:461月
平年2月28天,闰年2月29天
平年全年365天,闰年全年366天
1日=24小时1时=60分
1分=60秒1时=3600秒积=底面积×高V=Sh
二年级数学公式有哪些?
平均除法的公式:总数÷份数=每份数。包含除法的公式:总数÷每份数=份数。被除数=除数×商+余数。除数=(被除数—余数)÷商。商=(被除数—余数)÷除数。余数=被除数—除数×商。
单位转换的公式分别是:1米=10分米1m=10dm。1分米=10厘米1dm=10cm。1厘米=10毫米1cm=10mm。1米=100厘米1m=100cm。1分米=100毫米1dm=100mm。1米=1000毫米1m=1000mm。1千米=1000米1km=1000m。
二年级数学的定律总结
在一道没有括号的算式,有加减法,又有乘除法,先算乘除法,再算加减法。如果只有加减法或只有乘除法时,要从左到右计算。再有括号的算式里,要先算括号里面的。
读数时要注意:末尾不管有几个零都不读,中间有一个零或两个以上的零只读一个零。写数时要注意:哪一个数位上一个也没有,就在那个数位上填零占位。
比较数的大小应注意:数位多的数比数位少的数大。当数位相同时,从位比起,位大的数就大。当位也相同时,就依次向下,一个数位一个数位的比,哪个数位大就说明那个数比较大。