矩阵范数怎么计算(矩阵范数计算题)

龙途教育 1次浏览

摘要:小天今天给分享矩阵范数怎么计算的知识,其中也会对矩阵范数计算题进行解释,希望能解决你的问题,请看下面的

小天今天给分享矩阵范数怎么计算的知识,其中也会对矩阵范数计算题进行解释,希望能解决你的问题,请看下面的文章阅读吧!

矩阵范数怎么计算(矩阵范数计算题)矩阵范数怎么计算(矩阵范数计算题)


矩阵范数怎么计算(矩阵范数计算题)


矩阵范数怎么计算(矩阵范数计算题)


1、||a|| = √(a,a) = √a^Ta其中 (a,a) 是a与a的内积,是a的各分量的平方之和如a=(X1,X2,X3),则||a||=√X1^2+X2^2+X3^3些矩阵范数不可以由向量范数来诱导,比如常用的Frobenius范数(也叫Euclid范数,简称F-范数或者E-范数):║A║F= ( ∑∑ aij^2 )^1/2 (A全部元素平方和的平方根)。

2、容易验证F-范数是相容的,但当min{m,n}>1时F-范数不能由向量范数诱导(||E11+E22||F=2>1)。

3、可以证明任一种矩阵范数总有与之相容的向量范数。

4、扩展资料谱半径和范数的关系是以下几个结论:定理1:谱半径不大于矩阵范数,即ρ(A)≤║A║。

5、因为任一特征对λ,x,Ax=λx,可得Ax=λx。

6、两边取范数并利用相容性即得结果。

7、定理2:对于任何方阵A以及任意正数e,存在一种矩阵范数使得║A║定理3(Gelfand定理):ρ(A)=lim_{k->∞} ║A^k║^{1/k}。

8、利用上述性质可以推出以下两个常用的推论:推论1:矩阵序列 I,A,A^2,…A^k,… 收敛于零的充要条件是ρ(A)推论2:级数 I+A+A^2+... 收敛到(I-A)^{-1}的充要条件是ρ(A)参考资料来源:。

本文到这结束,希望上面文章对大家有所帮助。

版权声明:本文发布于龙途教育 图片、内容均来源于互联网 如有侵权联系836084111@qq.com删除
随机内容