摘要:物理。连接体问题 1)AB用轻杆相连,运动状态相同,可作为整体。AB整体在斜面上做匀加速直线运动。则有: 对B球,
物理。连接体问题
1)AB用轻杆相连,运动状态相同,可作为整体。AB整体在斜面上做匀加速直线运动。则有:
对B球,有动能定理,得一道物理连接体问题
对B球,有动能定理,得一道物理连接体问题
对B球,有动能定理,得一道物理连接体问题
s=h/sinθ (2)
a=gsinθ (3)
联立(1)、(2)、(3),可得时间::
2) 在下滑到地面的整个过程中,AB组成的系统机械能守恒,所以:
3) 在此过程中,对B球,有动能定理,得
一道高中物理连接体问题
M1gH=M2gH/2
M1/M2=1/2
这是简单的一种方法了。。 但是我不知道你的图上A是不是在斜面底部。如果是在底部,那就是我这个了。摩擦不计,M2势能减少=M2gH/2,M1移动到顶点。也就是提升了H,重力势能上升M1gH,根据能量守恒定律得到上面的式子。
如M1不在底部。那就把MgH的“H”换成M1到顶部的垂直距离即可。
机械能守恒定律
M1gH/2正弦30°=M2gH/2
M1/m2=2/1
机械能守恒和机械能变化问题
:机械能守恒的概念你要明白
物体在只受重力(弹力)时,动能和势能发生相互转化
第二:机械能守恒的条件你要掌握
①只受重力或弹力
②受重力或弹力,还受其它力,但其它力不做功
③受重力或弹力,还受其它力,但其它力做功,但做功为0
第三:机械能常见的表达形势
①E初=E末
这是常用的,初态的机械能等于末态的机械能
②△Ek=△Ep动能的变化量等于势能的变化量
③△EA增=△EB减
这个常用在连接体中,就是A部分机械能的变化
量=B部分机械能的变化量
第四:常用模型
①平面和物体②斜面和物体③连接体④皮带模型⑤圆周运动和机械能综合模型⑥抛体运动和机械结合模型还有别的想不起了,
题目到处都有,由于baidu里面不好传图,所以就免了.如果想在高一就把这一章搞得很好的话,弄一本书来多做点题,然后就是请有高三经验的老师给作专题讲原来的重力势能是
mgh
,机械能也是mgh
,重力势能转换为动能
,落到地面的动能也是
mgh
所以小球落到地面前瞬间的机械能为
mgh
你用1/2
mv^2也可以,但是后还是得用
mgh来表达啊
,有物理方面的物体,可以加我qq,互相交流
谢谢采纳
高中物理对于较复杂的连接体,弹簧等动力学问题及机械能守恒分析不清
首先列牛二定律方程,
其次列功能关系(动能定理)方程,
接着列(角)动量(守恒)定理方程,
弹簧的话再列简谐振动方程,
然后列由问题导出的约束方程(一般是运动学方程,针对连接体问题),比如绳长不变,速度比为定值之类的,
后联立方程组求解.
前面说的各种方程中牛二方程还有动量方程啥的都是矢量方程的话还可以分为x方向,y方向,z方向的方程.
列方程的时候仔细点别写错,比如别把振动方程的平衡位置啥的搞错,然后就基本能解出来了.
有时候对整体列方程,有时候用隔离法对局部列方程,具体情况具体分析.
动力学问题应该不多了.
关于连接体中做功问题
高中阶段,所谓的绳子都是轻绳,即不考虑质量的绳子
你画的图中,机械能是守恒的,绳子不能“储存能量”,但是可以作为能量传递或转换的中介
至于在滑轮上,那要得滑轮摩擦不计(高中就这么认为),只要只有重力做功或系统内弹力(且特指弹簧的弹力,切记)做功,系统机械能总守恒
在煤油相对运动的情况下,内力做功为零,但是内力做功代数和不一定恒为零,但内力的冲量(矢量和)恒为零。
系统机械能守恒是没有除重力和系统内的弹力做功(即保守力)时守恒,具有一般性
高中阶段此类问题均是机械能守恒,也可以用动能定理去解,因为绳子是理想的,不记质量,且滑轮不记摩擦
为什么用机械能守恒定律解连接体轻绳时一个物体静止时动能的增加量要算总质量?
用机械能守恒定律解题的时候,我们需要遵守的条件是只有重力做功。对于轻绳接连物体中的一个物体,他在运动中将受到两个力的作用,一个是重力,另一个是绳子的拉力。因此我们不能用机械能守恒定律来解决一个物体动能的增加,但是我们将两个物体作为一个系统进行研究,等子作为系统内的内力,我们就可以用机械能守恒定律来解题了,因为对于系统来说,只有重力做功。