高考数学圆锥曲线硬解公式_速解圆锥曲线

龙途教育 1次浏览

摘要:我想知道高中数学圆锥曲线问题常用的公式,比较特殊一点的公式。 18.椭圆焦三角形中,半焦距必为内、外点到椭圆中

我想知道高中数学圆锥曲线问题常用的公式,比较特殊一点的公式。

18. 椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项.

椭 圆

高考数学圆锥曲线硬解公式_速解圆锥曲线高考数学圆锥曲线硬解公式_速解圆锥曲线


高考数学圆锥曲线硬解公式_速解圆锥曲线


1. 点P处的切线PT平分△PF1F2在点P处的外角.

2. PT平分△PF1F2在点P处的外角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.

3. 以焦点弦PQ为直径的圆必与对应准线相离.

4. 以焦点半径PF1为直径的圆必与以长轴为直径的圆内切.

5. 若 在椭圆 上,则过 的椭圆的切线方程是 .

6. 若 在椭圆 外 ,则过Po作椭圆的两条切线切点为P1、P2,则切点弦P1P2的直线方程是 .

7. 椭圆 (a>b>0)的左右焦点分别为F1,F 2,点P为椭圆上任意一点 ,则椭圆的焦点角形的面积为 .

8. 椭圆 (a>b>0)的焦半径公式:

, ( , ).

10. 过椭圆一个焦点F的直线与椭圆交于两点P、Q, A1、A2为椭圆长轴上的顶点,A1P和A2Q交于点M,A2P和A1Q交于点N,则MF⊥NF.

11. AB是椭圆 的不平行于对称轴的弦,M 为AB的中点,则 ,

即 。

12. 若 在椭圆 内,则被Po所平分的中点弦的方程是 .

13. 若 在椭圆 内,则过Po的弦中点的轨2、判断椭圆是 x型还是y型只要看x对应的分母大还是y2对应的分母大,若x对应的分母大则x型,若y2对应的分母大则y型.x2y2迹方程是 .

双曲线

1. 点P处的切线PT平分△PF1F2在点P处的内角.

2. PT平分△PF1F2在点P处的内角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.

3. 以焦点弦PQ为直径的圆必与对应准线相交.

4. 以焦点半径PF1为直径的圆必与以实轴为直径的圆相切.(内切:P在右支;外切:P在左支)

5. 若 在双曲线 (a>0,b>0)上,则过 的双曲线的切线方程是 .

6. 若 在双曲线 (a>0,b>0)外 ,则过Po作双曲线的两条切线切点为P1、P2,则切点弦P1P2的直线方程是 .

7. 双曲线 (a>0,b>o)的左右焦点分别为F1,F 2,点P为双曲线上任意一点 ,则双曲线的焦点角形的面积为 .

8. 双曲线 (a>0,b>o)的焦半径公式:( ,

当 在右支上时, , .

当 在左支上时, ,

9. 设过双曲线焦点F作直线与双曲线相交 P、Q两点,A为双曲线长轴上一个顶点,连结AP 和AQ分别交相应于焦点F的双曲线准线于M、N两点,则MF⊥NF.

10. 过双曲线一个焦点F的直线与双曲线交于两点P、Q, A1、A2为双曲线实轴上的顶点,A1P和A2Q交于点M,A2P和A1Q交于点N,则MF⊥NF.

11. AB是双曲线 (a>0,b>0)的不平行于对称轴的弦,M 为AB的中点,则 ,即 。

12. 若 在双曲线 (a>0,b>0)内,则被Po所平分的中点弦的方程是 .

13. 若 在双曲线 (a>0,b>0)内,则过Po的弦中点的轨迹方程是 .

椭圆与双曲线的对偶性质--(会推导的经典结论)

椭 圆

1. 椭圆 (a>b>o)的两个顶点为 , ,与y轴平行的直线交椭圆于P1、P2时A1P1与A2P2交点的轨迹方程是 .

2. 过椭圆 (a>0, b>0)上任一点 任意作两条倾斜角互补的直线交椭圆于B,C两点,则直线BC有定向且 (常数).

3. 若P为椭圆 (a>b>0)上异于长轴端点的任一点,F1, F 2是焦点, , ,则 .

4. 设椭圆 (a>b>0)的两个焦点为F1、F2,P(异于长轴端点)为椭圆上任意一点,在△PF1F2中,记 , , ,则有 .

5. 若椭圆 (a>b>0)的左、右焦点分别为F1、F2,左准线为L,则当0<e≤ 时,可在椭圆上求一点P,使得PF1是P到对应准线距离d与PF2的比例中项.

6. P为椭圆 (a>b>0)上任一点,F1,F2为二焦点,A为椭圆内一定点,则 ,当且仅当 三点共线时,等号成立.

7. 椭圆 与直线 有公共点的充要条件是 .

8. 已知椭圆 (a>b>0),O为坐标原点,P、Q为椭圆上两动点,且 .(1) ;(2)|OP|2+|OQ|2的值为 ;(3) 的最小值是 .

9. 过椭圆 (a>b>0)的右焦点F作直线交该椭圆右支于M,N两点,弦MN的垂直平分线交x轴于P,则 .

10. 已知椭圆 ( a>b>0) ,A、B、是椭圆上的两点,线段AB的垂直平分线与x轴相交于点 , 则 .

12. 设A、B是椭圆 ( a>b>0)的长轴两端点,P是椭圆上的一点, , , ,c、e分别是椭圆的半焦距离心率,则有(1) .(2) .(3) .

13. 已知椭圆 ( a>b>0)的右准线 与x轴相交于点 ,过椭圆右焦点 的直线与椭圆相交于A、B两点,点 在右准线 上,且 轴,则直线AC经过线段EF 的中点.

14. 过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.

15. 过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.

16. 椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).

(注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.)

17. 椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e.

椭圆与双曲线的对偶性质--(会推导的经典结论)

双曲线

1. 双曲线 (a>0,b>0)的两个顶点为 , ,与y轴平行的直线交双曲线于P1、P2时A1P1与A2P2交点的轨迹方程是 .

2. 过双曲线 (a>0,b>o)上任一点 任意作两条倾斜角互补的直线交双曲线于B,C两点,则直线BC有定向且 (常数).

3. 若P为双曲线 (a>0,b>0)右(或左)支上除顶点外的任一点,F1, F 2是焦点, , ,则 (或 ).

4. 设双曲线 (a>0,b>0)的两个焦点为F1、F2,P(异于长轴端点)为双曲线上任意一点,在△PF1F2中,记 , , ,则有 .

5. 若双曲线 (a>0,b>0)的左、右焦点分别为F1、F2,左准线为L,则当1<e≤ 时,可在双曲线上求一点P,使得PF1是P到对应准线距离d与PF2的比例中项.

6. P为双曲线 (a>0,b>0)上任一点,F1,F2为二焦点,A为双曲线内一定点,则 ,当且仅当 三点共线且 和 在y轴同侧时,等号成立.

7. 双曲线 (a>0,b>0)与直线 有公共点的充要条件是 .

8. 已知双曲线 (b>a >0),O为坐标原点,P、Q为双曲线上两动点,且 .

(1) ;(2)|OP|2+|OQ|2的最小值为 ;(3) 的最小值是 .

9. 过双曲线 (a>0,b>0)的右焦点F作直线交该双曲线的右支于M,N两点,弦MN的垂直平分线交x轴于P,则 .

10. 已知双曲线 (a>0,b>0),A、B是双曲线上的两点,线段AB的垂直平分线与x轴相交于点 , 则 或 .

11. 设P点是双曲线 (a>0,b>0)上异于实轴端点的任一点,F1、F2为其焦点记 ,则(1) .(2) .

12. 设A、B是双曲线 (a>0,b>0)的长轴两端点,P是双曲线上的一点, , , ,c、e分别是双曲线的半焦距离心率,则有(1) .

(2) .(3) .

13. 已知双曲线 (a>0,b>0)的右准线 与x轴相交于点 ,过双曲线右焦点 的直线与双曲线相交于A、B两点,点 在右准线 上,且 轴,则直线AC经过线段EF 的中点.

14. 过双曲线焦半径的端点作双曲线的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.

15. 过双曲线焦半径的端点作双曲线的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.

16. 双曲线焦三角形中,外点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).

(注:在双曲线焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点).

17. 双曲线焦三角形中,其焦点所对的旁心将外点与非焦顶点连线段分成定比e.

双曲线焦三角形中,半焦距必为内、外点到双曲线中心的比例中项.

数学圆锥曲线解题技巧

11. 设P点是椭圆 ( a>b>0)上异于长轴端点的任一点,F1、F2为其焦点记 ,则(1) .(2) .

【数学圆锥曲线解题技巧】 1.客观题部分

(x1+x2)(x1-x2)/a^2=-(y1+y2)(y1-y2)/b^2

例1 (新课标2·2015)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,且顶角为120°,则E的离心率为( )。

A。5 B。2 C。3 D。2

解析 该题的核心知识点有两个:等腰三角形的性质;双曲线的标准方程和性质。①将双曲线方程设定为x2a2-y2b2=1(a>0,b>0),如图;②因为AB=BM,∠ABM=120°,过点M作MN垂直于X轴,垂足为N,在Rt△BMN中,求得BN=a,MN=3a,M点的坐标为(2a,3a),③根据双曲线方程、c2=a2+b2以及离心率e=ca(e>1),可以求的c2=2a2,e=2,因此本题选D。本题涉及的基本思想方法是待定系数法。

2.主观题部分

首先,是数形结合的思想方法,这种思想方法特点在于将圆锥曲线从平面的角度视为一种运动中的轨迹,在此背景下,题目的考核目标往往是与轨迹相关的边缘域问题、定值问题、最值问题等。

例2 (山东·2015)平面直角坐标系xOy中,已知椭圆C:x24a2+y24b2=1(a>b>0)的离心率为32,左、右焦点分别是F1和F2,以F1为圆心以3为半径的圆与以F2为圆心1为半径的圆相交,且交点在椭圆C上。

(Ⅰ)求椭圆C的方程。

(Ⅱ)设椭圆E;x24a2+y24b2=1,p为椭圆C上任意一点,过点P的直线y=kx+m交椭圆E于A和B两点,射线PO交椭圆E于点Q。

(ⅰ)求OQOP的值。

(ⅱ)求△ABQ面积的值。

解析 本题的核心知识点有:椭圆的定义;韦达定理与最值问题;椭圆与直线的位置关系问题。①根据椭圆的定义2a是定值,以及e=32,结合椭圆的标准方程求的a=2,b=1,因此椭圆的方程为C:x24+y2=1。②根据题意,设OQOP=λ,P(x0,y0),则Q(-λx0,-λy0)。又x24a2+y24b2=1,所以将P和Q带入方程解得,λ=2,所以OQOP=2。③根据题意设A(x1,y1),B(x2,y2)。将y=kx+m带入方程x216+y24=1得到(1+4k2)x2+8kmx+4m2-16=0,根据韦达定理,由Δ>0,m2<4+16k2(Ⅰ);x1+x2=-8km1+4k2,x1x2=4m2-161+4k2,x1-x2=416k2+4-m21+4k2。因为直线y=kx+m与轴焦点的坐标为(0,m),所以△ABO的面积为S=12mx1-x2=24-m21+4k2m21+4k2,令m21+4k2=t,由Δ≥0,可得m2≤1+4k2(Ⅱ)。由(Ⅰ)和(Ⅱ)可得,0与数形结合的思想方法相适应的题目类型有:圆锥曲线通过构造出的三角形关系,与直线、韦达定理、函数的最值问题等建立起逻辑关联,依靠代数法或几何法解题,其中涉及例如联立方程法、整体消元法等解题技巧,强化计算能力,助力高考。

其次,是化归、分类讨论以及函数与方程的思想方法,将这几种思想方法综合起来看,它主要强调考生通过建立起圆锥曲线与方程之间的关联,在简化思想模型的基础上,进行有效地推理与论证。建立在数形结合的基础上,分类锁定知识背景中的相关考点,化归简化思想路径,最终用代数转方程来表达圆锥曲线与关联对象之间的相互关系(例题略)。

总 结

在对圆锥曲线问题的解答中,需要考生灵活运用相关知识,综合性的考虑各种可行性方案与可能的因素,配合一定的解题技巧和计算能力给出。

【圆锥曲线公式大全】

1、椭圆的定义、椭圆的标准方程、椭圆的性质

3、求椭圆方程一般先判定椭圆是x型还是y型,若为x型则可设为2?2?1,若为yaby2x222

型则可设为2?2?1,若不知什么型且椭圆过两点,则设为稀里糊涂型:mx?ny?1ab

4、双曲线的定义、双曲线的标准方程、椭圆的性质

2、判断双曲线是 x型还是y型只要看x前的符号是正还是y前的符号是正,若x前的符号为正则x型,若y前的符号为正则y型,同样的,哪个分母前的符号为正,则哪个分母就为a22x2y2

3、求双曲线方程一般先判定双曲线是x型还是y型,若为x型则可设为2?2?1,若aby2x2

为y型则可设为2?2?1,若不知什么型且双曲线过两点,则设为稀里糊涂型:abmx2?ny2?1(mn?0)

6、若已知双曲线一点坐标和渐近线方程y?mx,则可设双曲线方程为y2?m2x2??(??0),而后把点坐标代入求解

7、椭圆、双曲线、抛物线与直线l:y?kx?b的弦长公式:AB?? 8、椭圆、双曲线、抛物线与直线问题出现弦的中点往往考虑用点法

9、椭圆、双曲线、抛物线与直线问题的解题步骤:

(1)化成整(把分式型的椭圆方程化为整式型的椭圆方程),联立消y或x

(2)求出判别式,并设点使用伟大定理

(3)使用弦长公式

1、抛物线的定义:平面内有一定点F及一定直线l (F不在l上)P点是该平面内一动点,当且仅当点P到F的距离与点P到直线l距离相等时,那么P的轨迹是以F为焦点,l为准线的一条抛物线.————见距离想定义!!!

2、(1)抛物线标准方程左边一定是x或y的平方(系数为1),右边一定是关于x和y的一次项,如果抛物线方程不标准,立即化为标准方程!

(2)抛物线的一次项为x即为x型,一次项为y即为y型!

(3)抛物线的焦点坐标为一次项系数的四分之一,准线与焦点坐标互为相反数!一次项为x,则准线为”x=多少”, 一次项为y,则准线为”y=多少”!

(4)抛物线的开口看一次项的符号,一次项为正,则开口朝着正半轴,一次项为负,则开口朝着负半轴!

(5)抛物线的题目强烈建议画图,有图有真相,无图无真相!

4、抛物线简单的几何性质:

1、 抛物线的焦点弦,设P(x1,y1),Q(x2,y2),且P,Q为抛物线y2?2px经过焦点的一条弦:p2

(1)P(x1,y1),Q(x2,y2)两点坐标的关系:y1y2??p,x1x2? 42

(2)焦点弦长公式:PQ?(x1?x2)?p=2p(其中?为直线PQ的倾斜角大小) 2sin?

(3)垂直于对称轴的焦点弦称为是通径,通径长为2p

5、(1)直线与椭圆一个交点,则直线与椭圆相切。

(2)直线与双曲线一个交点,则考虑两种情况:种是直线与双曲线相切;第二种是直线与双曲线的渐近线平行。

(3)直线与抛物线一个交点,则考虑两种情况:种是直线与抛物线相切;第二种是直线与抛物线的对称轴平行。

6、判断点与抛物线、椭圆位置关系:先把方程化为标准式,而后把点代入,若大于,线外,等于线上,小于线内。

7、在研究直线与双曲线,直线与椭圆,直线与抛物线位置关系时,若已知直线过一个点(x0,y0)时,往往设为点斜式:y?y0?k(x?x0),但是尤其要注意讨论斜率不存在的情况!!!斜率不存在则设为x?x0.

11、用点法解决双曲线的弦的中点问题,一定要记得把所求出的直线方程与双曲线方程联立消去y求出判别式,检验判别式如果小于0,则直线不存在!!!

1、 椭圆上的一点到椭圆焦点的距离为a?c,最小距离为a?c,椭圆上取得

距离和最小距离的点分别为椭圆长轴的两个顶点。

2、 判断过已知点的直线与抛物线一个交点直线条数:

(1) 若已知点在抛物线外,则过该点的直线与抛物线一个交点的直线有三条:相切两条,与对称轴平行一条。

(2) 若已知点在抛物线上,则过该点的直线与抛物线一个交点的直线有两条:相切一条,与对称轴平行一条。

(3) 若已知点在抛物线内,则过该点的直线与抛物线一个交点的直线有一条:相切0条,与对称轴平行一条。

(1) 动点的轨迹方程。

3、 求点的轨迹的五个步骤:

(1) 建立直角坐标系(在不知点坐标的情况下)。

(2) 设点:求什么点的轨迹就只能把该点设为(x,y),不能设为其它形式的坐标!!!

(3) 根据直接法、代入法、定义法列出x和y的关系式。

(4) 化简关系式。

(5) 看看题目有没有什么限制条件,根据限制条件写出x或y 的范围!!!易错!!!

7、过椭圆内部的一个点的直线必与椭圆相交,过双曲线或抛物线内部的一个点的直线与双曲线或抛物线至少有一个交点:与双曲线的渐近线平行,一个交点;不平行,两个交点;与抛物线的对称轴平行,一个交点;不平行,两个交点。

高中数学圆锥曲线的所有有用公式

圆锥曲线

圆锥曲线包括椭圆,双曲线,抛物线

1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|)}。

2. 双曲线:到两个定点的距离的的为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即{P|||PF1|-|PF2||=2a, (2a<|F1F2|)}。

3. 抛物线:到一个定点和一条定直线的距离相等的动点轨迹叫做抛物线。

4. 圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当01时为双曲线。

·圆锥曲线由来:圆,椭圆,双曲线,抛物线同属于圆锥曲线。早在两千多年前,古希腊数学家对它们已经很熟悉了。古希腊数学家阿波罗尼采用平面切割圆锥的方法来研究这几种曲线。用垂直与锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线;当平面再倾斜一些就可以得到双曲线。阿波罗尼曾把椭圆叫“亏曲线”,把双曲线叫做“超曲线”,把抛物线叫做“齐曲线”。

1)直线

参数方程:x=X+tcosθ y=Y+tsinθ (t为参数)

直角坐标:y=ax+b

2)圆

直角坐标:x^2+y^2=r^2 (r 为半径)

目录·定义3)椭圆

参数方程:x=X+acosθ y=Y+bsinθ (θ为参数 )

直角坐标(中心为原点):x^2/a^2 + y^2/b^2 = 1

4)双曲线

参数方程:x=X+asecθ y=Y+btanθ (θ为参数 )

直角坐标(中心为原点):x^2/a^2 - y^2/b^2 = 1 (开口方向为x轴) y^2/a^2 - x^2/b^2 = 1 (开口方向为y轴)

直角坐标:y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c (开口方向为x轴, a<>0 )

圆锥曲线(二次非圆曲线)的统一极坐标方程为

ρ=ep/(1-e·cosθ)

其中e表示离心率,p为焦点到准线的距离。

双曲线

数学上指一动点移动于一个平面上,与平面上两个定点的距离的始终为一定值时所成的轨迹叫做双曲线(Hyperbola)。两个定点叫做双曲线的焦点(focus)。

● 双曲线的第二定义:

到定点的距离与到定直线的距离之比=e , e∈(1,+∞)

·双曲线的一般方程为(x^2/a^2)-(y^2/b^2)=1

其中a>0,b>0,c^2=a^2+b^2,动点与两个定点之为定值2a

·双曲线的参数方程为:

y=Y+b·tanθ

(θ为参数)

·几何性质:

1、取值区域:x≥a,x≤-a

2、对称性:关于坐标轴和原点对称。

3、顶点:A(-a,0) A’(a,0) AA’叫做双曲线的实轴,长2a;

B(0,-b) B’(0,b) BB’叫做双曲线的虚轴,长2b。

4、渐近线:

y=±(b/a)x

5、离心率:

e=c/a 取值范围:(1,+∞]

6 双曲线上的一点到定点的距离和到定直线的距离的比等于双曲线的离心率

椭圆

·标准方程

·公式

·相关性质

·历史

定义

椭圆是一种圆锥曲线(也有人叫圆锥截线的),现在高中教材上有两种定义:

1、平面上到两点距离之和为定值的点的(该定值大于两点间距离)(这两个定点也称为椭圆的焦点,焦点之间的距离叫做焦距);

2、平面上到定点距离与到定直线间距离之比为常数的点的(定点不在定直线上,该常数为小于1的正数)(该定点为椭圆的焦点,该直线称为椭圆的准线)。这两个定义是等价的

高中课本在平面直角坐标系中,用方程描述了椭圆,椭圆的标准方程为:x^2/a^2+y^2/b^2=1

其中a>0,b>0。a、b中较大者为椭圆长半轴长,较短者为短半轴长(椭圆有两条对称轴,对称轴被椭圆所截,有两条线段,它们分别叫椭圆的长半轴和短半轴)当a>b时,焦点在x轴上,焦距为2(a^2-b^2)^0.5,准线方程是x=a^2/c和x=-a^2/c

椭圆的面积是πab。椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=acosθ , y=bsinθ

公式

椭圆的面积公式:

S=π(圆周率)×a×b(其中a,b分别是椭圆的长半轴,短半轴的长).

椭圆的周长公式:

C=2Bπ(圆周率)/A×根号下(2A的平方-2B的平方)(其中A,B分别是椭圆的长半轴和短半轴)

学好数学,不仅是一种知识的积累,更是一种思维的训练。通过正确的方法和态度,数学将成为你通往智慧和成功的重要途径。坚持学习,追求数学的美,让数学之光照亮你的学习之路。相关性质

由于平面截圆锥(或圆柱)得到的图形有可能是椭圆,所以它属于一种圆锥截线。

例如:有一个圆柱,被截得到一个截面,下面证明它是一个椭圆(用上面的定义):

将两个半径与圆柱半径相等的半球从圆柱两端向中间挤压,它们碰到截面的时候停止,那么会得到两个公共点,显然他们是截面与球的切点。

设两点为F1、F2

对于截面上任意一点P,过P做圆柱的母线Q1、Q2,与球、圆柱相切的大圆分别交于Q1、Q2

则PF1=PQ1、PF2=PQ2,所以PF1+PF2=Q1Q2

由定义1知:截面是一个椭圆,且以F1、F2为焦点

用同样的方法,也可以证明圆锥的斜截面(不通过底面)为一个椭圆

椭圆有一些光学性质:椭圆的面镜(以椭圆的长轴为轴,把椭圆转动180度形成的立体图形,其外表面全部做成反射面,中空)可以将某个焦点发出的光线全部反射到另一个焦点处;椭圆的透镜(某些截面为椭圆)有汇聚光线的作用(也叫凸透镜),老花、放大镜和远都是这种镜片(这些光学性质可以通过反证法证明)

历史

关于圆锥截线的某些历史:圆锥截线的发现和研究起始于古希腊。 Euclid, Archimedes, Apollonius, Pappus 等几何学都热衷于圆锥截线的研究,而且都有专著论述其几何性质,其中以 Apollonius 所著的八册《圆锥截线论》集其大成,可以说是古希腊几何学一个登峰造极的精擘之作。当时对于这种既简朴又完美的曲线的研究,乃是纯粹从几何学的观点,研讨和圆密切相关的这种曲线;它们的几何乃是圆的几何的自然推广,在当年这是一种纯理念的探索,并不寄望也无从预期它们会真的在大自然的基本结构中扮演著重要的角色。此事一直到十六、十七世纪之交,Kepler 行星运行三定律的发现才知道行星绕太阳运行的轨道,乃是一种以太阳为其一焦点的椭圆。Kepler 三定律乃是近代科学开天劈地的重大突破,它不但开创了天文学的新纪元,而且也是牛顿万有引力定律的根源所在。由此可见,圆锥截线不单单是几何学家所爱好的精简事物,它们也是大自然的基本规律中所自然选用的精要之一。

抛物线

1.什么是抛物线?

平面内,到一个定点F和一条定直线l距离相等的点的轨迹(或)称之为抛物线.

另外,F称为"抛物线的焦点",l称为"抛物线的准线".

定义焦点到抛物线的距离为"焦准距",用p表示.p>0.

以平行于地面的方向将切割平面插入一个圆锥,可得一个圆,如果倾斜这个平面

直至与其一边平行,就可以做一条抛物线。

2.抛物线的标准方程

右开口抛物线:y^2=2px

左开口抛物线:y^2=-2px

上开口抛物线:y=x^2/2p

下开口抛物线:y=-x^2/2p

3.抛物线相关参数(对于向右开口的抛物线)

离心率:e=1

焦点:(p/2,0)

准线方程l:x=-p/2

顶点:(0,0)

4.它的解析式求法:三点代入法

5.抛物线的光学性质:经过焦点的光线经抛物线反射后的光线平行抛物线的对称轴.

抛物线:y = ax + bx + c

就是y等于ax 的平方加上 bx再加上 c

a > 0时开口向上

a < 0时开口向下

c = 0时抛物线经过原点

b = 0时抛物线对称轴为y轴

就是y等于a乘以(x-h)的平方+k

h是顶点坐标的x

k是顶点坐标的y

一般用于求值与最小值

抛物线标准方程:y^2=2px

它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2

由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py

圆锥曲线硬解定理口诀

9. 设过椭圆焦点F作直线与椭圆相交 P、Q两点,A为椭圆长轴上一个顶点,连结AP 和AQ分别交相应于焦点F的椭圆准线于M、N两点,则MF⊥NF.

圆锥曲线硬解定理口诀:法半二四轴(椭圆)与二点八(双曲线)方程式,以二里亦四末(抛物线)为。

扩展知识

数学,是一门理性而深邃的学科,也是一把开启智慧之门的金钥匙。在学习数学的过程中,坚持正确的学习方法和培养积极的学习态度至关重要。以下是一些建议,帮助你更好地学好数学。

1、建立良好的数学基础:在学习数学之前,确保掌握了基础的算术、代数和几何知识。数学是一门渐进的学科,牢固的基础是深厚数学功底的前提。

2、明确学习目标和动机:设定清晰的学习目标,明确为何要学好数学。是为了应对考试、追求数学奖项,还是为了将来的职业需要。明确动机有助于持续学习的动力。

3、注重概念理解:不仅要追求计算的准确性,更要深刻理解数学概念的本质。弄清楚为什么,而不只是怎么做。建议采用实例和图形辅助理解抽象的数学概念。

4、制定科学合理的学习:制定适合自己的学习,合理分配学习时间。注意区分不同数学领域的难易程度,更多时间应投入到较难的知识点上。

5、多角度学习,灵活运用资源:除了课堂教学,多途径获取数学学习资源,如教科书、参考书、在线教程、数学软件等。灵活运用各种资源,有助于更全面地理解和掌握知识。

6、勤于练习和实践:数学是一门需要不断实践的学科。多做习题,不仅能够巩固知识,还能培养解决问题的能力。挑战一些难题,锻炼思维参数方程:x=2pt^2 y=2pt (t为参数)。

7、善用工具和技术:利用科技手段辅助学习,例如数学软件、计算器等。这些工具能够提高计算效率,让学习更加高效。

8、合理应对困难和错误:遇到困难时不要气馁,而是要积极寻找解决办法。理解错题的原因,从中吸取经验教训,避免重复犯同样的错误。

9、主动参与数学活动:积极参与数学竞赛、数学沙龙、讲座等数学相关的活动。这不仅能够锻炼自己,还能与他人分享学习心得,开阔数学视野。

10、寻找数学的乐趣:在学习数学的过程中,要保持对数学的兴趣和好奇心。数学并不是一堆乏味的数字和符号,而是一门充满乐趣的学科。通过寻找数学的美,使学习变得更加愉悦。

11、与同学交流合作:与同学建立良好的学习关系,相互交流思想,合作解决问题。群策群力,有时能够发现问题的更多解法。

12、持之以恒,循序渐进:数学是需要时间和耐心的学科。不要期望一蹴而就,持之以恒,循序渐进,每一步都是向前进一步的积累。

圆锥曲线定理

·圆锥曲线的参数方程和直角坐标方程:

其实是一套求解椭圆(或双曲线)与直线相交时,

(尤其对称性的性质要认真研究应用,经常由线对称挖掘出点对称,从而推出垂直平分等潜在条件!)

联立方程求判别式、韦达定理与相交弦长的结果公式,常应用于解析几何。

求圆锥曲线弦长的公式?

有三个弦长公式:

2、弧长为L、半径为R时:弦长=2Rsin(L180/πR);

3、直线与圆锥曲线相交所得弦长时:弦长=│x1-x2│√(k^2+1)=│y1-y2│√[(1/k^2)+1]

PS:圆锥曲线, 是数学、几何学中通过平切圆锥(严格为一个正圆锥面和一个平面完整相切)(4)直线与抛物线的位置关系,理论上由直线方程与抛物线方程的联立方程组实解的情况来确定,实践中往往归纳为对相关一元二次方程的判别式△的考察:直线与抛物线交于不同两点??>0;直线与抛物线交于一点???0 (相切)或直线平行于抛物线的对称轴; 直线与抛物线不相交???0得到的一些曲线,如:椭圆,双曲线,抛物线等。

扩展资料:

关于直线与圆锥曲线相交求弦长,通用方法是将直线y=kx+b代入曲线方程,化为关于x(或关于y)的一元二次方5)抛物线程。

设出交点坐标,利用韦达定理及弦长公式求出弦长,这种整体代换,设而不求的思想方法对于求直线与曲线相交弦长是十分有效的。

然而对于过焦点的圆锥曲线弦长求解利用这种方法相比较而言有点繁琐,利用圆锥曲线定义及有关定理导出各种曲线的焦点弦长公式就更为简捷。

参考资料来源:

高中数学圆锥曲线 这个kab的公式是如何推出的

?、圆锥曲线硬解定理,又称圆锥曲线联立公式,

根据上面:(x1^2-x2^2)/a^2=-(y1^2-y2^2)/b^2

于是:(y1-y2)/(x1-x2)=-(b^2/a^2)(x1+x2)/(y1+y2)

其中:x1+x2=2x0,y1+y2=2y0

圆锥上定点到定直线公式

圆锥曲线

圆锥曲线包括椭圆,双曲线,抛物线

1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|)}。

2. 双曲线:到两个定点的距离的的为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即{P|||PF1|-|PF2||=2a, (2a<|F1F2|)}。

3. 抛物线:到一个定点和一条定直线的距离相等的动点轨迹叫做抛物线。

4. 圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当01时为双曲线。

·圆锥曲线由来:圆,椭圆,双曲线,抛物线同属于圆锥曲线。早在两千多年前,古希腊数学家对它们已经很熟悉了。古希腊数学家阿波罗尼采用平面切割圆锥的方法来研究这几种曲线。用垂直与锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线;当平面再倾斜一些就可以得到双曲线。阿波罗尼曾把椭圆叫“亏曲线”,把双曲线叫做“超曲线”,把抛物线叫做“齐曲线”。

1)直线

参数方程:x=X+tcosθ y=Y+tsinθ (t为参数)

直角坐标:y=ax+b

2)圆

直角坐标:x^2+y^2=r^2 (r 为半径)

3)椭圆

参数方程:x=X+acosθ y=Y+bsinθ (θ为参数 )

直角坐标(中心为原点):x^2/a^2 + y^2/b^2 = 1

4)双曲线

参数方程:x=X+asecθ y=Y+btanθ (θ为参数 )

直角坐标(中心为原点):x^2/a^2 - y^2/b^2 = 1 (开口方向为x轴) y^2/a^2 - x^2/b^2 = 1 (开口方向为y轴)

直角坐标:y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c (开口方向为x轴, a<>0 )

圆锥曲线(二次非圆曲线)的统一极坐标方程为

ρ=ep/(1-e·cosθ)

其中e表示离心率,p为焦点到准线的距离。

双曲线

数学上指一动点移动于一个平面上,与平面上两个定点的距离的始终为一定值时所成的轨迹叫做双曲线(Hyperbola)。两个定点叫做双曲线的焦点(focus)。

● 双曲线的第二定义:

到定点的距离与到定直线的距离之比=e , e∈(1,+∞)

·双曲线的一般方程为(x^2/a^2)-(y^2/b^2)=1

其中a>0,b>0,c^2=a^2+b^2,动点与两个定点之为定值2a

·双曲线的参数方程为:

y=Y+b·tanθ

(θ为参数)

·几何性质:

1、取值区域:x≥a,x≤-a

2、对称性:关于坐标轴和原点对称。

3、顶点:A(-a,0) A’(a,0) AA’叫做双曲线的实轴,长2a;

B(0,-b) B’(0,b) BBx=X+a·secθ’叫做双曲线的虚轴,长2b。

4、渐近线:

y=±(b/a)x

5、离心率:

e=c/a 取值范围:(1,+∞]

6 双曲线上的一点到定点的距离和到定直线的距离的比等参数方程:x=X+rcosθ y=Y+rsinθ (θ为参数 )于双曲线的离心率

圆锥曲线用硬解定理怎么解y 1+y2 y1y2?

还有顶点式y = a(x-h) + k

就是算

标准方程

x1+x2

、x1

x2、y1+y2、y1y2

及相交弦长,如果有固定例题的话没必要用这个公式了,按照传统方法更快,其实就是方便算

x1+x2

、x1

x2、y1+y2、y1y2。平时考试偷懒可以用一下,高考用这种方法也许反而更麻烦,而且一般也不考这种了。

圆锥曲线切线方程公式推导

1、半径为R、圆心角为a时:弦长=2Rsina;

圆锥曲线切线方程公式推导如下:

圆锥曲线切线方程公式是x^2/a^2+y^2/b^2=1。

圆锥曲线包括椭圆,双曲线,抛物线。

1、椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。即:{p| |pf1|+|pf2|=2a, (2a>|f1f2|)}。

2、双曲线:到两个定点的距离的的为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即{p|||pf1|-|pf2||=2a, (2a<|f1f2|)}。

3、抛物线:到一个定点和一条定直线的距离相等的动点轨迹叫做抛物线。

4、圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当0<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线23、求抛物线方程,如果只知x型,则设它为y?ax (a?0),a>o,开口朝右;a<0,开口朝左;2如果只知y型,则设它为x?ay(a?0),a>o,开口朝上;a<0,开口朝下。。

立体几何定义:以直角三角形的直角边所在直线为旋转轴,其余两边旋转360度而成的曲面所围成的几何体叫做圆锥。旋转轴叫做圆锥的轴。垂直于轴的边旋转而成的曲面叫做圆锥的底面。

版权声明:本文发布于龙途教育 图片、内容均来源于互联网 如有侵权联系836084111@qq.com删除
随机内容